Answer:
The molar mass of Mg(NO₃)₂, 148.3 g/mol.
Explanation:
Step 1: Given data
- Mass of Mg(NO₃)₂ (solute): 42.0 g
- Volume of solution: 259 mL = 0.259 L
Step 2: Calculate the moles of solute
To calculate the moles of solute, we need to know the molar mass of Mg(NO₃)₂, 148.3 g/mol.
42.0 g × 1 mol/148.3 g = 0.283 mol
Step 3: Calculate the molarity of the solution
M = moles of solute / liters of solution
M = 0.283 mol / 0.259 L
M = 1.09 M
Convert temperature to Kelvin
Convert vol to L
Apply Charles law
- V1T_2=V2T_1
- 0.4(400)=498V_2
- 160=498V_2
- V_2=0.32L=320mL
Answer:
the energy possessed by a body by virtue of its position relative to others, stresses within itself, electric charge, and other factors.
Explanation:
Answer:
the molarity of cobalt(II) fluoride in the resulting solution is = 0.137 M
Explanation:
Given that :
a student dissolves 6.64 g of CoF₂ into 500 mL of water
volume of the solution(water) = 500 mL = 0.50 L
The standard molar mass of CoF₂ is 96.93 g/mol
number of moles of CoF₂ = mass of CoF₂/molar mass of CoF₂
number of moles of CoF₂ = 6.64 g/96.93 g/mol
number of moles of CoF₂ = 0.0685 mol
The molarity of any given substance is known to be as the number of moles of solute dissolved in one litre of solution.
Thus ;
Molarity of cobalt(II) fluoride CoF₂ in the resulting solution is = number of moles / Volume in (L)
Molarity of cobalt(II) fluoride CoF₂ = 0.0685 mol/ 0.50 L
= 0.137 M
Thus ; the molarity of cobalt(II) fluoride in the resulting solution is = 0.137 M
Answer:
No streak of light will appear.
Reason I given below.
Explanation:
No streak of light will be seen.
This is because as it falls to the moon, the gravitational pull plus the dense atmosphere which was necessary to produce friction when it fell to the earth are not present in this case and as such the whole meteor is not burnt like it did when it fell to the earth.