Set up the problem with the conversion rates as fractions where when you multiply the units cancel out leaving the desired units behind.
Answer:
because its not going down a long hill instead its going on a leveled street
Answer:
The object will move to Xfinal = 7.5m
Explanation:
By relating the final velocity of the object and its acceleration, I can obtain the time required to reach this velocity point:
Vf= a × t ⇒ t= (7.2 m/s) / (4.2( m/s^2)) = 1,7143 s
With the equation of the total space traveled and the previously determined time I can obtain the end point of the object on the x-axis:
Xfinal= X0 + /1/2) × a × (t^2) = 3.9m + (1/2) × 4.2( m/s^2) × ((1,7143 s) ^2) =
= 3.9m + 3.6m = 7.5m
Sunspots<span> are temporary phenomena on the </span>Sun<span>'s photosphere that appear as </span>spots<span> darker than the surrounding areas. They are regions of reduced surface temperature caused by concentrations of magnetic field flux that inhibit convection. </span>Sunspots<span> usually appear in pairs of opposite magnetic polarity.
</span>
Answer:
The force exerted by the biceps is 143.8 kgf.
Explanation:
To calculate the force exerted by the biceps, we calculate the momentum in the elbow.
This momentum has to be zero so that her forearm remains motionless.
Being:
W: mass weight (6.15 kg)
d_W= distance to the mass weight (0.425 m)
A: weight of the forearm (2.25 kg)
d_A: distance to the center of mass of the forearm (0.425/2=0.2125 m)
H: force exerted by the biceps
d_H: distance to the point of connection of the biceps (0.0215 m)
The momemtum is:

The force exerted by the biceps is 143.8 kgf.