1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
german
3 years ago
14

A crowbar is being used with an actual mechanical advantage of 8. If the input force is 400 Newton’s on the 0.3 meter long end o

f the crowbar, what is the output force on the short end?
a) 960 N
b) 50N
C) 3,200 n
D) 120 n
Physics
1 answer:
finlep [7]3 years ago
7 0

Answer:

C. 3,200

Explanation:

MA= F out/ F in.

multiply F in on both sides to cancel it out so you can solve for F out.

Fin*MA=F out

400 * 8 = F out

3,200= F out

You might be interested in
What is the reaction force to a foot pushing down on the floor?
Helga [31]

Answer:

C. The floor pushing back against the foot​

Explanation:

5 0
3 years ago
Read 2 more answers
Who would be most likely to analyze a tablet with cuneiform to determine what goods were traded by the merchants of Ur?
mars1129 [50]
 I think your answer would Be A. Because historians mostly study written documents, while archaeologists uncover fossils and buildings.
5 0
3 years ago
Read 2 more answers
The two uniform, slender rods B1and B2, each of mass 2kg, are pinned together at P, and then B1is suspended from a pin at O. (Th
Bezzdna [24]

Answer:

hello the diagram relating to this question is attached below

a) angular accelerations : B1 = 180 rad/sec,  B2 = 1080 rad/sec

b) Force exerted on B2 at P = 39.2 N

Explanation:

Given data:

Co = 150 N-m ,

<u>a) Determine the angular accelerations of B1 and B2 when couple is applied</u>

at point P ; Co = I* ∝B2'

                150  = ( (2*0.5^2) / 3 ) * ∝B2

∴ ∝B2' = 900 rad/sec

hence angular acceleration of B2 = ∝B2' + ∝B1 = 900 + 180 = 1080 rad/sec

at point 0 ; Co = Inet * ∝B1

                  150 = [ (2*0.5^2) / 3  + (2*0.5^2) / 3  + (2*0.5^2) ] * ∝B1

∴ ∝B1 = 180 rad/sec

hence angular acceleration of B1 =  180 rad/sec

<u>b) Determine the force exerted on B2 at P</u>

T2 = mB1g + T1  -------- ( 1 )

where ; T1 = mB2g  ( at point p )

                 = 2 * 9.81 = 19.6 N

back to equation 1

T2 = (2 * 9.8 ) + 19.6 = 39.2 N

<u />

3 0
3 years ago
If you lose control of your vehicle and collide with a fixed object, such as a tree, at 60 m.p.h., the force of impact is the sa
My name is Ann [436]
You can compare the velocity of the car, 60 mph, with the velocity that a mass would acquire when falls from certain height.

First, convert 60 mph to m/s:

60 miles/h * 1.60 km/mile * 1000 m/km * 1h/3600s = 26.67 m/s

Second, calculate from what height a body in free fall reachs 26.67 m/s velocity when hits the floor.

free fall => Vf^2 = 2g*H => H = Vf^2 / (2g)

H = (26.67m/s)^2 / (2*9.8 m/s) = 36.2 m

If you consider that the height between the floors of a building is approximately 3.6 m, you get 36.2 m / 3.6 m/floor = 10 floors.

Then, you conclude that the force of impact is the same as driving you vehicle off a 10 story building.
7 0
3 years ago
Suppose a small planet is discovered that is 16 times as far from the Sun as the Earth's distance is from the Sun. Use Kepler's
mamaluj [8]

Answer:

23376 days

Explanation:

The problem can be solved using Kepler's third law of planetary motion which states that the square of the period T of a planet round the sun is directly proportional to the cube of its mean distance R from the sun.

T^2\alpha R^3\\T^2=kR^3.......................(1)

where k is a constant.

From equation (1) we can deduce that the ratio of the square of the period of a planet to the cube of its mean distance from the sun is a constant.

\frac{T^2}{R^3}=k.......................(2)

Let the orbital period of the earth be T_e and its mean distance of from the sun be R_e.

Also let the orbital period of the planet be T_p and its mean distance from the sun be R_p.

Equation (2) therefore implies the following;

\frac{T_e^2}{R_e^3}=\frac{T_p^2}{R_p^3}....................(3)

We make the period of the planet T_p the subject of formula as follows;

T_p^2=\frac{T_e^2R_p^3}{R_e^3}\\T_p=\sqrt{\frac{T_e^2R_p^3}{R_e^3}\\}................(4)

But recall that from the problem stated, the mean distance of the planet from the sun is 16 times that of the earth, so therefore

R_p=16R_e...............(5)

Substituting equation (5) into (4), we obtain the following;

T_p=\sqrt{\frac{T_e^2(16R_e)^3}{(R_e^3}\\}\\T_p=\sqrt{\frac{T_e^24096R_e^3}{R_e^3}\\}

R_e^3 cancels out and we are left with the following;

T_p=\sqrt{4096T_e^2}\\T_p=64T_e..............(6)

Recall that the orbital period of the earth is about 365.25 days, hence;

T_p=64*365.25\\T_p=23376days

4 0
3 years ago
Other questions:
  • How does changing the number of neutrons affect an atom?
    8·1 answer
  • A dc motor with its rotor and filed coils connected in serieshas an internal resistance of
    6·1 answer
  • Calculate the value of the error (only) with one decimal place for: (21+1-14%) x (14 +1-9%) Please enter the answer without +- s
    13·1 answer
  • Answer the following question below oki plzzz
    15·1 answer
  • A blue puck has a velocity of 0i – 3j m/s and a mass of 4 kg. A gold puck has a velocity of 12i – 5j m/s and a mass of 6 kg. Wha
    8·1 answer
  • Help me with this Weather Station Model by answering 5 questions. It is due tomorrow.
    7·1 answer
  • Which main body system is responsible for breaking down food from energy?
    5·1 answer
  • What does it mean when wave
    10·1 answer
  • Grade 10 My smart Physics people help me with this review question please
    7·1 answer
  • I need an answer quick
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!