Answer:
<em>The distance the car traveled is 21.45 m</em>
Explanation:
<u>Motion With Constant Acceleration
</u>
It occurs when an object changes its velocity at the same rate thus the acceleration is constant.
The relation between the initial and final speeds is:
![v_f=v_o+at\qquad\qquad [1]](https://tex.z-dn.net/?f=v_f%3Dv_o%2Bat%5Cqquad%5Cqquad%20%5B1%5D)
Where:
a = acceleration
vo = initial speed
vf = final speed
t = time
The distance traveled by the object is given by:
![\displaystyle x=v_o.t+\frac{a.t^2}{2}\qquad\qquad [2]](https://tex.z-dn.net/?f=%5Cdisplaystyle%20x%3Dv_o.t%2B%5Cfrac%7Ba.t%5E2%7D%7B2%7D%5Cqquad%5Cqquad%20%5B2%5D)
Solving [1] for a:

Substituting the given data vo=0, vf=6.6 m/s, t=6.5 s:


The distance is now calculated with [2]:

x = 21.45 m
The distance the car traveled is 21.45 m
B
Think of inertia of getting into a car accident without a seat belt although the car stops you will not you would likely fly out the window
Answer:
<h2>
3338.98 kg/m³</h2>
Explanation:
The formula for calculating the relative density of a substance is expressed as
Relative density of a liquid = Density of the liquid /density of water
Given relative density of a liquid = 0.34
Density of water 997kg/m³
Substituting into the formula we have;
Density of the liquid = Relative density of a liquid * density of water
Density of the liquid = 0.34 * 997
Density of the liquid = 3338.98 kg/m³
F = 2820.1 N
Explanation:
Let the (+)x-axis be up along the slope. The component of the weight of the crate along the slope is -mgsin15° (pointing down the slope). The force that keeps the crate from sliding is F. Therefore, we can write Newton's 2nd law along the x-axis as
Fnet = ma = 0 (a = 0 no sliding)
= F - mgsin15°
= 0
or
F = mgsin15°
= (120 kg)(9.8 m/s^2)sin15°
= 2820.1 N