Protons are positive,
electrons are negative,
and neutrons are neutral.
In the nucleus, there are protons and neutrons, so the charge of a nucleus is positive.
Answer:
D. Top is emission; bottom absorption.
Explanation:
Emission and spectrum of elements are due to the element absorbing or emitting wavelength of e-m energy. Elementary particles of elements can absorb energy from a ground state to enter an excited state, creating an absorption spectrum, or they can lose energy and fall back to a lower energy state, creating an emission spectrum. A simple rule to differentiate between an emission and an absorption spectrum is that: "all absorbed wavelength is emitted, but not all emitted wavelength is absorbed."
From the image, the lines indicates wavelengths. We can see that all of the wavelengths of the bottom absorption spectrum coincides with some of the wavelength of the upper emission wavelengths.
Net force acting on mass = 20 - 15 = 5N. ( subtracted cuz friction always opposes the motion i.e it always acts in direction opposite to the motion of the object). According to Newton's 2nd law of motion, F(net) = ma. a =F (net) / m = 5/10 = 0.5 m/s^2. Hope it helps :)
To know what is it. and i think that the reason behind your question is that PHYSICS IS DAMM HARD
Answer:
a)6.67 m/s2
b)16.7 rad/s2
c)increasing angular acceleration
Explanation:
a) It's because the system is not just mass of the man, it consists of the man holding a rope wrapped around a cylinder, not just a man free falling. So you would have to consider the rotating cylinder under the torque created by the man gravity force.
Let g = 10m/s2
T = mgd =75*10*0.4 = 300 N.m
The from the mass moments inertial of the solid cylinder:

we can calculate the angular acceleration of the cylinder:

then translate that to acceleration:

c) if the mass of the rope is not neglected, that means the force of gravity increases as the rope unwrapping around the cylinder, so the torque increases. Also the moment of inertial of the rope-cylinder system decreases due to rope unwrapping. In the end, the angular acceleration is no longer constant, but increasing.