Im a bit torn here, lets look at the definitions of physical and chemical changes:
physical change changes only the phase/state of a substance, but not what the substance is
chemical change is a chemical reaction where a new substance is formed and energy is given off or absorbed.
(it just started raining and it smells really nice out my window)
clearly, this cannot be just a physical reaction. i think i would be inclined to pick B. but C. could have merit as an answer too. sorry for the ambiguity x
Answer:
Multiply the number of moles in the product by the molecular weight of the product to determine the theoretical yield.
Explanation:
For example:
If you created 0.5 moles of Aluminium Oxide the molecular weight of Aluminium Oxide is 101.96g/mole, so you would get 50.98g as the theoretical yield.
So multiply,..
101.96x0.5= 50.98
This is the correct way to calculate the theoretical yield
......
Empirical formula of ionic compound is FeO. In which the composition of atoms is 1 : 1.
Empirical formula of an ionic compound is defined as the formula which gives whole number ratio of atoms of various elements present in molecule of compund.
mass of iron in compound = 34.95 g
molar mass of iron = 55.8 g
mass of oxygen in compound = 15.05 g
molar mass of oxygen = 32 g
number of moles of iron present in the compound are ratio of mass of iron in compound/ molar mass of iron
number of moles of iron in compound= 34.95 / 55.8 = 0.6263 ~ 1
number of moles oxygen in compound= 15.05/ 32 = 0.473 ~ 0.5
the ratio of the number of oxygen atoms to number of iron atoms present in one formula unit of iron compund is 2×0.5 / 1 = 1 : 1
Hence , the required empirical formula of iron compound is FeO.
To learn more about Emiprical formula, refer:
brainly.com/question/1439914
#SPJ4
Answer:
The partial pressure of argon in the flask = 71.326 K pa
Explanation:
Volume off the flask = 0.001 
Mass of the gas = 1.15 gm = 0.00115 kg
Temperature = 25 ° c = 298 K
Gas constant for Argon R = 208.13 
From ideal gas equation P V = m RT
⇒ P = 
Put all the values in above formula we get
⇒ P =
× 208.13 × 298
⇒ P = 71.326 K pa
Therefore, the partial pressure of argon in the flask = 71.326 K pa