Answer:
0.0432 M H2SO4
Explanation:
First, we want to find the moles of MNaOH used. We know that Molarity x Liters = moles. 0.160M x 0.0210L = 0.00336 moles MNaOH
to find the moles of H2SO4, we can use a mol ratio.
0.00336mol MNaOH x (1Mol H2SO4 /2mol MNaOH)
= 0. 00168 mol H2SO4
I found the mol ratio by looking at the coefficients in front of the molecules I knew(MNaOH) and the molecule I needed to find(H2SO4)
then, to find Molarity, we do mol/Liters
0.00168 mol/ 0.0388L =. 0.0432 M H2SO4
You can convert mL to L by dividing by 1000
the significant figures of this problem is 3, so my final answer will also have 3 sig figs.
Ok cool I ujust do you think I should be able to get a hold with him tomorrow morning or t if rry want me too early or something I don’t know how to get it off or if you want me too I just need it for a while and I’ll get back with him
a solution in chemistry is a homogeneous mixture composed of two or more substances. In such a mixture, a solute is a substance dissolved in another substance, known as a solvent.
Answer: The final temperature of nickel and water is
.
Explanation:
The given data is as follows.
Mass of water, m = 55.0 g,
Initial temp,
,
Final temp,
= ?,
Specific heat of water = 4.184
,
Now, we will calculate the heat energy as follows.
q = 
= 
Also,
mass of Ni, m = 15.0 g,
Initial temperature,
,
Final temperature,
= ?
Specific heat of nickel = 0.444 
Hence, we will calculate the heat energy as follows.
q = 
=
Therefore, heat energy lost by the alloy is equal to the heat energy gained by the water.

= -(
)
= 
Thus, we can conclude that the final temperature of nickel and water is
.