Answer:
Explanation:
You should allow the solvent to drop to the level of the adsorvent, so it would never run dry.
When you let your sample to run dry it will never finish to flow from the adsorbent depending of it polarity.
Water should not be used because it can dissolve the adsorbent.
You could use another technique to identify the compound, as an infrared or a ultraviolet detector. You can also, if you know the compounds, identify it for the retention time, for example, if you need to detect two compounds, one more polar than the other, and use a polar adsorbent and a non-polar solvent, the first compound to exit the column will be the less polar one, because it will have a bigger interaction with the solvent than the stationary phase (adsorbent) and will go faster, the second will be the more polar one, because it will have a bigger interaction with the stationary phase.
Explanation:
Different atoms absorb and emit specific wavelengths of electromagnetic radiation and nothing in between. These absorption and emission spectra are actually used to identify atoms of elements in a substance. This phenomenon is explained by Bohr's theory of quantized energy levels in an atom – called orbital levels. When an electron 'jumps' from a lower to higher orbital level, it absorbs a specific wavelength of electromagnetic radiation specific to the ‘jump’. Vice versa, when an electron 'jumps' to a lower orbital level is emits an equivalent and specific wavelength of electromagnetic radiation.
Learn More:
For more on emission spectra check out;
brainly.com/question/12472637
brainly.com/question/8788867
#LearnWithBrainly
B. Most species that have lived on earth are now extinct. Ap3x
1:3
The ratio of Al3+ ions to Cl− ions in the chemical formula is 1:3.
I’m sorry if this didn’t help I’m new to Brainly
Original molarity was 1.7 moles of NaCl
Final molarity was 0.36 moles of NaCl
Given Information:
Original (concentrated) solution: 25 g NaCl in a 250 mL solution, solve for molarity
Final (diluted) solution: More water is added to make the new total volume 1.2 liters, solve for the new molarity
1. Solve for the molarity of the original (concentrated) solution.
Molarity (M) = moles of solute (mol) / liters of solution (L)
Convert the given information to the appropriate units before plugging in and solving for molarity.
Molarity (M) = 0.43 mol NaCl solute / 0.250 L solution = 1.7 M NaCl (original solution)
2. Solve for the molarity of the final (diluted) solution.
Remember that the amount of solute remains constant in a dilution problem; it is just the total volume of the solution that changes due to the addition of solvent.
Molarity (M) = 0.43 mol NaCl solute / 1.2 L solution
Molarity (M) of the final solution = 0.36 M NaCl
I hope this helped:))