The answer is B because it literally says it right there, and I don't wanna make it impossibly confusing for a middle school student, lol.
Answer:
The difference of power is
ΔP = 172.767 kPa
Explanation:
ρ = 1390 kg / m³
v = 9.63 m/s
d₁ = 10.1 cm , d₂ = 15.3 cm
Δz = 8.85 m
To find the difference ΔP between the fluid pressure at locations 2 and the fluid pressure at location 1
ΔP = ρ * g * Z + ¹/₂ * ρ * v² * ( 1 - (d₁ / d₂)⁴ )
ΔP = 1390 kg / m³ * 9.8 m/s² * 8.85 m + 0.5 * 1390 kg / m³ *(9.63 m /s)² * (1 - (0.101 m / 0.153 m )⁴ )
ΔP = 172.767 x 10 ³ Pa
ΔP = 172.767 kPa
<span> The lens of the eye is a convex lens. The image that it forms on the retina is upside down.</span>
Answer:
The statement which explains how the total time spent in the air is affected as the projectile's angle of launch increases from 25 degrees to 50 degrees is;
C. Increasing the angle from 25° to 50° will increase the total time spent in the air
Explanation:
The equation that can be used to find the total time, T, spent in the air of a projectile is given as follows;

Where;
T = The time of flight of the projectile = The time spent in the air
u = The initial velocity of the projectile
θ = The angle of launch of the projectile
g = The acceleration due to gravity ≈ 9.81 m/s²
Given that sin(50°) > sin(25°), when the angle of launch, θ, is increased from 25 degrees to 50 degrees, we have;
Let T₁ represent the time spent in the air when the angle of launch is 25°, and let T₂ represent the time spent in the air when the angle of launch is 50°, we have;


sin(50°) > sin(25°), therefore, we have;

Therefore;
T₂ > T₁
Therefore, increasing the angle at which the projectile is launched from 25° to 50° will increase the total time spent in the air.