Answer with Explanation:
We are given that




a.Length of segment,l=20 m
Magnetic force ,F=

Substitute the values

Hence, the magnetic force exert by each segment on the other=0.0119 N
b.We know that when current carrying in the wires are in same direction then the force will attract to each other.
Hence, the force will be attractive.
Answer:
the magnitude of the velocity of the block just after impact is 2.598 m/s and the original speed of the bullect is 324.76m/s.
Explanation:
a) Kinetic energy of block = potential energy in spring
½ mv² = ½ kx²
Here m stands for combined mass (block + bullet),
which is just 1 kg. Spring constant k is unknown, but you can find it from given data:
k = 0.75 N / 0.25 cm
= 3 N/cm, or 300 N/m.
From the energy equation above, solve for v,
v = v √(k/m)
= 0.15 √(300/1)
= 2.598 m/s.
b) Momentum before impact = momentum after impact.
Since m = 1 kg,
v = 2.598 m/s,
p = 2.598 kg m/s.
This is the same momentum carried by bullet as it strikes the block. Therefore, if u is bullet speed,
u = 2.598 kg m/s / 8 × 10⁻³ kg
= 324.76 m/s.
Hence, the magnitude of the velocity of the block just after impact is 2.598 m/s and the original speed of the bullect is 324.76m/s.
Pounds
If you are talking about the unit of measurement for weight is that of force it would be Newtons.
Answer:
W = 600 J
Explanation:
We have,
According to attached figure,
Height of the inclined plane is 60 m
Force acting on the block is 10 N
It is required to find the work must be done against gravity to move it to the top of the incline. The work done is given by :
W = mgh
or

So, the work done against the gravity is 600 J.
Answer:
The magnitude of Electric Field is 
Explanation:
Given:
- Radius of the solid sphere=R
- Total charge of the sphere=Q
Let consider a Gaussian surface at a distance of r such that 0<r>R in the shape of sphere such that the electric Field due to this E and it is radially outwards.
The charge inside this Gaussian surface volume we have , 
Now using Gauss Law we have
