Many things can affect a material's resistance, The type of material, how the material is being held (If its laying flat, being pulled, etc). What the material is used for, and how much material there is. Hope this helps!
Answer:
a) the three longest wavelengths = 4.8m, 2.4m, 1.6m
b) what is the frequency of the third-longest wavelength = 75Hz
Explanation:
The steps and appropriate formula and substitution is as shown in the attached file.
Period = 6 seconds and
.
<u>Explanation:</u>
We have , the motion of a swing that requires 6 seconds to complete one cycle. Period is the amount of time needed to complete one oscillation . And in question it's given that 6 seconds is needed to complete one cycle. Hence ,Period of the motion of a swing is 6 seconds . Frequency is the number of vibrations produced per second and is calculated with the formula of
. SI unit of frequency is Hertz or Hz. We know that time period is 6 seconds so frequency =
⇒ 
⇒ 
⇒ 
Therefore , Period = 6 seconds and
.
Answer:
c. is more than that of the fluid.
Explanation:
This problem is based on the conservation of energy and the concept of thermal equilibrium

m= mass
s= specific heat
\DeltaT=change in temperature
let s1= specific heat of solid and s2= specific heat of liquid
then
Heat lost by solid= 
Heat gained by fluid=
Now heat gained = heat lost
therefore,
1000 S_2=800 S_1
S_1=1.25 S_2
so the specific heat of solid is more than that of the fluid.
Answer:
There is absolutely No relationship between the weight of an object (which is constant) and the frictional force. If a block is sliding on a surface, that surface will be exerting a force on the block. That force can be resolved into a component parallel to the surface (which we call the frictional component), and a component perpendicular to the surface (called the normal component). For many situations, we find experimentally that the frictional component is approximately proportional to the normal component. The frictional component divided by the normal component is defined to be a quantity called the coefficient of kinetic or sliding friction. The coefficient of kinetic friction obviously depends on the nature of the surfaces involved. The normal component on an object can be decreased if you pull in the direction of the normal component (the weight does not change). However pulling this way on the object not only decreases the normal component, but it also decreases the frictional component since they are proportional. This is why it is easier to slide something if you pull up on it while you push it. If you push down, the normal and frictional components increase so it is harder to slide the object. The weight of an object is the downward force exerted by Earth’s gravity on that object, and it does not change no matter how you push or pull on the object.