-- The product of the magnitudes of the two charges.
-- The distance between the centers of the two charges.
The signs of the charges ... whether their signs are the same
or opposite ... determines the direction of the forces, but not
their magnitude.
The zero net electric field point is at a point that is 0.98 m away from 4.7C charge.If a 14C charge is placed at this point then, force acted on the charge placed at this point is equal to zero.
Explanation:
Let at A both net electric field is zero then
At A ,E1=E2
E1=k*Iq1I / (d+x)^2
E2=k*Iq2I /x^2
Equating both
Answer:
81.6 m
Explanation:
Answer: 81.6 m.
The time it takes gravity to slow 40 m/s to zero when it teaches maximum height is
-v(initial) / -g = t
-40 m/s / -9.8 m/s^2 = 4.08 s
The height reached is the average velocity times this time 4.08 s, with v(avg) = [v(initial) + v(final)] / 2 with v(final) = 0. v(avg) = v(initial) / 2 = 40 m/s / 2 = 20 m/s.
So the distance d of maximum height is
d = v(avg)•t
d = 20 m/s • 4.08 s = 81.6 m.
The mass is still 10 kg. But instead of weighing 98N as it does on Earth, it weighs 245N on Jupiter.
<h2><u>Projectile</u><u> </u><u>motion</u><u>:</u></h2>
<em>If</em><em> </em><em>an</em><em> </em><em>object is given an initial velocity</em><em> </em><em>in any direction and then allowed</em><em> </em><em>to travel freely under gravity</em><em>, </em><em>it</em><em> </em><em>is</em><em> </em><em>called a projectile motion</em><em>. </em>
It is basically 3 types.
- horizontally projectile motion
- oblique projectile motion
- included plane projectile motion