Answer:
A) The event horizon, singularity, and the chute located between the two.
<span>Balloons are blown up, and then rubbed against your shirt many times. The balloon then touches the ceiling. When released, the balloon remains stuck to the ceiling. The balloon is charged by contact. The ceiling has a neutral charge. The charged balloon induces a slight surface charge on the ceiling opposite to the charge on the balloon. Balloon and ceiling electric charges are opposite in sign, so they will attract each other. Since both the balloon and the ceiling are insulators, charge can not flow from one to the other. The charge on the balloon is fixed on the balloon and the charge on the ceiling remains fixed to the ceiling. It just so happens that the<span> electrostatic force the ceiling exerts on the balloon is sufficient to hold the balloon in place (i.e. overcomes gravity, etc.).</span></span>
You can. But the gravity on the moon is 1/6th the gravity on Earth. This means 300 lbs man would only weigh 50 lbs.
1.8461 km/hr Well i need more characters so i might as well type a beautiful sentence for you to read and waste your time on.
Answer:
Explanation:
a ) The direction of angular velocity vector of second hand will be along the line going into the plane of dial perpendicular to it.
b ) If the angular acceleration of a rigid body is zero, the angular velocity will remain constant.
c ) If another planet the same size as Earth were put into orbit around the Sun along with Earth the moment of inertia of the system will increase because the mass of the system increases. Moment of inertia depends upon mass and its distribution around the axis.
d ) Increasing the number of blades on a propeller increases the moment of inertia , because both mass and mass distribution around axis of rotation increases.
e ) It is not possible that a body has the same moment of inertia for all possible axes because a body can not remain symmetrical about all axes possible. Sphere has same moment of inertia about all axes passing through its centre.
f ) To maximize the moment of inertia of a flywheel while minimizing its weight, the shape and distribution of mass should be such that maximum mass of the body may be situated at far end of the body from axis of rotation . So flywheel must have thick outer boundaries and this should be
attached with axis with the help of thin rods .
g ) When the body is rotating at the same place , its translational kinetic energy is zero but its rotational energy can be increased
at the same place.