Answer:
a. Cylinder head
b. Exhaust valve
c. Engine block
d. Stroke
e. Piston
f. Intake valve
g. Cylinder
h. Combustion chamber
i. Crankshaft
j. Spark plug
Explanation:
If you don’t believe me, look up a diagram of an internal combustion engine.
2.57 joule energy lose in the bounce
.
<u>Explanation</u>:
when ball is the height of 1.37 m from the ground it has some gravitational potential energy with respect to hits the ground
Formula for gravitational potential energy given by
Potential Energy = mgh
Where
,
m = mass
g = acceleration due to gravity
h = height
Potential energy when ball hits the ground
m= 0.375 kg
h = 1.37 m
g = 9.8 m/s²

Potential Energy = 5.03 joule
Potential energy when ball bounces up again
h= 0.67 m

Potential Energy = 2.46 joule
Energy loss = 5.03 - 2.46 = 2.57 joule
2.57 joule energy lose in the bounce
Answer:
Hey mate......
Explanation:
This is ur answer.....
<h2><em>A. Rotation of Earth</em></h2>
<em>The moon rises in the east and sets in the west, each and every day. It has to. The rising and setting of all celestial objects is due to Earth's continuous daily spin beneath the sky</em><em>.</em>
Hope it helps!
Brainliest pls!
Follow me! :)
Some of the challenges are the unpredictable fish and the risk of scratching againest coral or drowning for not focusing on your oxygen tank.
<h3>
Answer:</h3>
1.3 Amps
<h3>
Explanation:</h3>
<u>We are given;</u>
A circuit with resistors, R1 and R2
R1 = 7 Ω
R2 = 11 Ω
Voltage = 24 V
We are required to calculate the current in the circuit.
<h3>Step 1: We need to find the effective resistance.</h3>
When resistors are arranged in series, the effective resistance is calculated by;
Rt = R₁ + R₂ + R₃ + ..........Rₙ
Therefore;
Total resistance = 7 + 11
= 18 Ω
<h3>Step 2: Calculate the current in the circuit</h3>
From the ohm's law;
V = IR
Rearranging the formula;
I = V/R
Thus;
I = 24 V ÷ 18 Ω
= 1.333 Amps
= 1.3 Amps
Thus, the current in the circuit is 1.3 Amps