Answer:
A. Force of friction
Explanation:
Find the diagram attached
From the diagram we can see that the force B is acting up on the body along the plane. This force is the force that prevents the body from sliding down the plane. Originally, the body on the line will tend to slide down the incline even without application of a force hence the reason of an opposing force that must act in the opposite direction is counter this motion to make the body be in a state of equilibrium. Hence the required force is force of friction since it is am opposing force acting in the direction opposite to the moving force acting on the body.
(A) power = 0.208 kW = 208 watts
(B) energy = 6.6 x 10^{9} joules
Explanation:
energy consumed per day = 5 kWh
(a) find the power consumed in a day
1 day = 24 hours
power = \frac{energy}{time}
power = \frac{5}{24}
power = 0.208 kW = 208 watts
(b) find the energy consumed in a year
assuming it is not a leap year and number of days = 365 days
1 year = 365 x 24 x 60 x 60 = 31,536,000 seconds
energy = power x time
energy = 208 x 31,536,000
energy = 6.6 x 10^{9} joules
Answer:
7.1934 x 10^12 V/m.s
Explanation:
In order to do this exercise, you need to use the correct formula. Besides that, we need to identify our data.
First we have the radius of the plates which are circular, and it's 0.1 m. The current of the loop (I) is 2.0 A, and the radius of the loop is 0.2 m.
Now with this data, we use the next formula:
I = dE/dt Eo A
Where:
dE/dt = rate of electric field
Eo = constant of permittivity of free space
A = Area of circle
Solving for dE/dT:
dE/dt = I / Eo*A
Now, the area of the circle is A = πr²
A = 3.1416 * (0.1)² = 0.031416 m²
Now solving the electric field:
dE/dt = 2 / (8.85x10^-12 * 0.031416)
dE/dt = 7.1934 x 10^12 V/m.s
The combustion of fossil fuels is releasing more co2 into the atmosphere then what would occur naturally
Use the displacement law, peak wavelength = 0.0029/T =0.0029/30000 = 97nm