1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
astra-53 [7]
3 years ago
9

A subatomic particle that has a positive charge and that is located in the nucleus of an atom

Physics
2 answers:
azamat3 years ago
4 0

Answer:

protons have a positive charge

Explanation:

neutrons have no charge

electrons have negative charge

wolverine [178]3 years ago
3 0

Answer:

c

Explanation:

You might be interested in
Which of the following traits might be considered an adaptation fora rabbit living in the Arctic?
puteri [66]
Where are the following traits ?
7 0
3 years ago
Read 2 more answers
Careful measurements have been made of Olympic sprinters in the 100-meter dash. A quite realistic model is that the sprinter's v
mihalych1998 [28]

Answer:

a.

\displaystyle a(0 )=8.133\ m/s^2

\displaystyle a(2)=2.05\ m/s^2

\displaystyle a(4)=0.52\ m/s^2

b.\displaystyle X(t)=11.81(t+1.45\ e^{-0.6887t})-17.15

c. t=9.9 \ sec

Explanation:

Modeling With Functions

Careful measurements have produced a model of one sprinter's velocity at a given t, and it's is given by

\displaystyle V(t)=a(1-e^{bt})

For Carl Lewis's run at the 1987 World Championships, the values of a and b are

\displaystyle a=11.81\ ,\ b=-0.6887

Please note we changed the value of b to negative to make the model have sense. Thus, the equation for the velocity is

\displaystyle V(t)=11.81(1-e^{-0.6887t})

a. What was Lewis's acceleration at t = 0 s, 2.00 s, and 4.00 s?

To compute the accelerations, we must find the function for a as the derivative of v

\displaystyle a(t)=\frac{dv}{dt}=11.81(0.6887\ e^{0.6887t})

\displaystyle a(t)=8.133547\ e^{-0.6887t}

For t=0

\displaystyle a(0)=8.133547\ e^o

\displaystyle a(0 )=8.133\ m/s^2

For t=2

\displaystyle a(2)=8.133547\ e^{-0.6887\times 2}

\displaystyle a(2)=2.05\ m/s^2

\displaystyle a(4)=8.133547\ e^{-0.6887\times 4}

\displaystyle a(4)=0.52\ m/s^2

b. Find an expression for the distance traveled at time t.

The distance is the integral of the velocity, thus

\displaystyle X(t)=\int v(t)dt \int 11.81(1-e^{-0.6887t})dt=11.81(t+\frac{e^{-0.6887t}}{0.6887})+C

\displaystyle X(t)=11.81(t+1.45201\ e^{-0.6887t})+C

To find the value of C, we set X(0)=0, the sprinter starts from the origin of coordinates

\displaystyle x(0)=0=>11.81\times1.45201+C=0

Solving for C

\displaystyle c=-17.1482\approx -17.15

Now we complete the equation for the distance

\displaystyle X(t)=11.81(t+1.45\ e^{-0.6887t})-17.15

c. Find the time Lewis needed to sprint 100.0 m.

The equation for the distance cannot be solved by algebraic procedures, but we can use approximations until we find a close value.

We are required to find the time at which the distance is 100 m, thus

\displaystyle X(t)=100=>11.81(t+1.45\ e^{-0.6887t})-17.15=100

Rearranging

\displaystyle t+1.45\ e^{-0.6887t}=9.92

We define an auxiliary function f(t) to help us find the value of t.

\displaystyle f(t)=t+1.45\ e^{-0.687t}-9.92

Let's try for t=9 sec

\displaystyle f(9)=9+1.45\ e^{-0.687\times 9}-9.92=-0.92

Now with t=9.9 sec

\displaystyle f(9.9)=9.9+1.45\ e^{-0.687\times 9.9}-9.92=-0.0184

That was a real close guess. One more to be sure for t=10 sec

\displaystyle f(10)=10+1.45\ e^{-0.687\times 10}-9.92=0.081

The change of sign tells us we are close enough to the solution. We choose the time that produces a smaller magnitude for f(t).  

At t\approx 9.9\ sec, \text{ Lewis sprinted 100 m}

7 0
3 years ago
Confirmation bias can affect our problem-solving abilities. <br> A. True <br> B. False
marusya05 [52]

The answer true I’m guessing. It’s a 50/50 chance

5 0
2 years ago
Calculate the rate of heat conduction through a layer of still air that is 1 mm thick, with an area of 1 m, for a temperature of
max2010maxim [7]

Answer:

The rate of heat conduction through the layer of still air is 517.4 W

Explanation:

Given:

Thickness of the still air layer (L) = 1 mm

Area of the still air = 1 m

Temperature of the still air ( T) = 20°C

Thermal conductivity of still air (K) at 20°C = 25.87mW/mK

Rate of heat conduction (Q) = ?

To determine the rate of heat conduction through the still air, we apply the formula below.

Q =\frac{KA(\delta T)}{L}

Q =\frac{25.87*1*20}{1}

Q = 517.4 W

Therefore, the rate of heat conduction through the layer of still air is 517.4 W

6 0
3 years ago
Read 2 more answers
What is the acceleration of an object with a constant velocity
valina [46]

Zero.

Acceleration is defined as the change in velocity over time.

Since in your case there is no change, there is no acceleration, so it is zero:

Or in formula: <span>a=<span><span>Δv</span>t</span></span>

Where a=acceleration, <span>Δv</span>=change in velocity and t=time

6 0
3 years ago
Read 2 more answers
Other questions:
  • A 5000-km long cable consists of seven copper wires, each of diameter 0.85 mm, bundled together and surrounded by an insulating
    10·1 answer
  • "The team wants to delete from Dataset A all activities related to users in Dataset B. How can an Einstein Consultant help them
    12·1 answer
  • Two objects have masses me and my and their centers are separated by a distance d. The force of gravitation
    14·1 answer
  • Which one of the Earth's layers is the thinnest?
    13·1 answer
  • Calculate the speed of an object that travels 75m in 15s.
    15·2 answers
  • How long does it take the lava bomb to reach its maximum height? Answer with three significant digits and the correct unit. A sm
    13·1 answer
  • WHAT IS THE NET FORCE (CENTRIPETAL FORCE) FOR A 1500 KG
    14·1 answer
  • What is the difference between storm spotter and storm chaser?
    10·1 answer
  • The chart shows data for a moving object.
    6·1 answer
  • You have found that the net force exerted on the cylinder depends on several different independent variables in different ways.
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!