Answer:
Given that
speed u=4*10^6 m/s
electric field E=4*10^3 N/c
distance b/w the plates d=2 cm
basing on the concept of the electrostatices
now we find the acceleration b/w the plates to find the horizontal distance traveled by the electron when it hits the plate.
acceleration a=qE/m=
=
m/s
now we find the horizontal distance traveled by electrons hit the plates
horizontal distance
![X=u[2y/a]^{1/2}](https://tex.z-dn.net/?f=X%3Du%5B2y%2Fa%5D%5E%7B1%2F2%7D)
=![4*10^6[2*2*10^{-2}/7*10^{14}]^{1/2}](https://tex.z-dn.net/?f=4%2A10%5E6%5B2%2A2%2A10%5E%7B-2%7D%2F7%2A10%5E%7B14%7D%5D%5E%7B1%2F2%7D)
=
= 3 cm
Answer:
static
Explanation:
static friction pushes in the direction you are walking.
Answer: A is your best answer.
Explanation:
It should be A because the when the ball bounces on the ground the ground will give it force to bounce again but also it wont go as high as it first did. Hope this helps:))
Alaska- Subartic Climate
Portland, Oregon- Marine West Coast Climate
Key West, Florida- Tropical Savannah Climate
Answer: Gases have three characteristic properties: (1) they are easy to compress, (2) they expand to fill their containers, and (3) they occupy far more space than the liquids or solids from which they form. An internal combustion engine provides a good example of the ease with which gases can be compressed.
Explanation: