Answer:
The time for the cake to cool off to room temperature is
approximately 30 minutes.
Let
=
F be the temperature and T that of the body
Explanation:
Our Tm = 70, the initial-value problem is
= <em>k</em>(T − 70), T(0) = 300
Solving the equation, we get
= <em>kdt</em>
In [T-70]= <em>kt </em>+
T = 70 +

Finding he value for
using the initial value of T (0)= 300, therefore we get:
300=70+
= 230 therefore
T= 70+ 230 
Finding the value for <em>k </em>using T (3) = 200, therefore we get
T (3) = 200
= 
<em>K </em>=
in 
= -0.19018
Therefore
T(t) = 70+230
Answer:
3.14 × 10⁻⁴ m³ /s
Explanation:
The flow rate (Q) of a fluid is passing through different cross-sections remains of pipe always remains the same.
Q = Area x velocity
Given:
Diameters of 3 sections of the pipe are given as
d1 = 1.0 cm, d2 = 2.0 cm and d3 = 0.5 cm.
Speed in the first segment of the pipe is
v1 = 4 m/s.
From the equation of continuity the flow rate through different cross-sections remains the same.
Flow rate = Q = A1 v1 = A2 v2 = A3 v3.
Q = A1v1
=π/4 d²1 v1 = π/4 * 0.01² ×4.0 m³/s = 3.14 × 10⁻⁴ m³ /s
Feel better and develop communication skills
It's not only the physical well-being that has developed as well as intellectual and emotional aspect of an individual. When having conversation to someone and you are doing something it's also the same of having a multitask work. That all senses response quickly and something is developing in you, at same time you are establishing good rapport towards others.
Answer:
pressure and temperature (assuming volume is constant)
Explanation:
<span>The speed of longitudinal waves, S, in a thin rod = âšYoung modulus / density , where Y is in N/m^2.
So, S = âšYoung modulus/ density. Squaring both sides, we have, S^2 = Young Modulus/ density.
So, Young Modulus = S^2 * density; where S is the speed of the longitudinal wave.
Then Substiting into the eqn we have (5.1 *10^3)^2 * 2.7 * 10^3 = 26.01 * 10^6 * 2.7 *10^6 = 26.01 * 2.7 * 10^ (6+3) = 70.227 * 10 ^9</span>