What condition alone is necessary so that the final kinetic energy of the system is zero after the collision?
<u>Option(a). </u>The objects must have initial momenta with the same magnitude but opposite directions.
What is a momentum?
- In Newtonian mechanics, linear momentum, translational momentum, or simply momentum is the product of the mass and velocity of an object.
- It is a vector quantity, possessing a magnitude and a direction.
- If m is an object's mass and v is its velocity (also a vector quantity), then the object's momentum p is :p=mv.
- In the International System of Units (SI), the unit of measurement of momentum is the kilogram metre per second (kg⋅m/s), which is equivalent to the newton-second.
To know more about momentum, refer:
brainly.com/question/1042017
#SPJ4
Answer: h = 0.30 m
Explanation:
A person jumping from height h would possess potential energy = m g h
which will convert completely into kinetic energy as person hits the ground. Now, the maximum energy absorbed by the person can be = 200 J
m = 67 kg
g = 9.8 m/s²
⇒ m g h = 200 J
⇒ h = 200 J / (67 kg × 9.8 m/s²) = 0.30 m
Hence, a person can land safely on both legs without breaking them from a height of 0.30 m only.
<h3>16.</h3>
Your answer is correct.
___
<h3>17.</h3>
The fractional change in resistance is equal to the given temperature coefficient multiplied by the change in temperature.
R = R₀×(1 + α×ΔT)
R = (10.0 Ω)×(1 + 0.004×(65 -20)) = 11.8 Ω
Answer:
0.015m^3
Explanation:
1 m^3 = 1000 liters
x m^3 = 15 liters
Cross multiply
xm^3 x 1000 l = 15 l
Divide both sides by 1000
xm^3 x1000/1000 = 15/1000
xm^3 = 0.015m^3
Therefore 15 liter = 0.015m^3
Answer:she should consider the time on how long it would take to move it and where she will move it
Explanation:
hope this helps