Answer:
Where the electric potential is constant, the strength of the electric field is zero.
Explanation:
As a test charge moves in a given direction, the rate of change of the electric potential of the charge gives the potential gradient whose negative value is the same as the value of the electric field. In other words, the negative of the slope or gradient of electric potential (V) in a direction, say x, gives the electric field (Eₓ) in that direction. i.e
Eₓ = - dV / dx ----------(i)
From equation (i) above, if electric potential (V) is constant, then the differential (which is the electric field) gives zero.
<em>Therefore, a constant electric potential means that electric field is zero.</em>
I assume the 100 N force is a pulling force directed up the incline.
The net forces on the block acting parallel and perpendicular to the incline are
∑ F[para] = 100 N - F[friction] = 0
∑ F[perp] = F[normal] - mg cos(30°) = 0
The friction in this case is the maximum static friction - the block is held at rest by static friction, and a minimum 100 N force is required to get the block to start sliding up the incline.
Then
F[friction] = 100 N
F[normal] = mg cos(30°) = (10 kg) (9.8 m/s²) cos(30°) ≈ 84.9 N
If µ is the coefficient of static friction, then
F[friction] = µ F[normal]
⇒ µ = (100 N) / (84.9 N) ≈ 1.2
Limestone and dolomite are the rocks present in the locations which leads to the formation of caves.
<h2>Formation of caves</h2>
The type of rocks that once existed in these locations are limestone and dolomite whereas the pH of the nearby groundwater is slightly acidic which is responsible for the formation of caves. Caves are formed by the dissolution of limestone due to acid rain.
<h3>Acid rain</h3>
Rainwater reacts with carbon dioxide from the air and percolates through the soil, which turns into a weak acid. This slowly dissolves out the limestone which become turn to form caves so we can conclude that Limestone and dolomite are the rocks present in the locations which leads to the formation of caves.
Learn more about caves here: brainly.com/question/7965722
Learn more: brainly.com/question/26111031
Given,
Current (I) = 0.50A
Voltage (V) = 120 volts
Resistance (R) =?
We know that:-
Voltage (V) = Current (I) x Resistance (R)
→Resistance (R) = Voltage (V) / Current (I)
= 120/0.50
= 24Ω
∴ Resistance (R) = 24Ω
Answer:
The maximum electric power output is 
Explanation:
From the question we are told that
The capacity of the hydroelectric plant is 
The level at which water is been released is 
The efficiency is
0.90
The electric power output is mathematically represented as
Where
is the potential energy at level h which is mathematically evaluated as

and
is the potential energy at ground level which is mathematically evaluated as


So
here 
where V is volume and
is density of water whose value is 
So

substituting values


The maximum possible electric power output is

substituting values

