The answer is false. The speed of the astronaut cancels out the force of gravity, causing a 'stationary freefall'. While under these effects, it is not required for an astronaut to 'strengthen' his body.
Answer:
675J
Explanation:
Given parameters:
Force = 45N
Distance = 15m
Unknown:
Work done by Sheila = ?
Solution:
Work done by a body is the amount of force applied to make a body move through a distance;
Work done = Force x distance
Now;
Work done = 45 x 15 = 675J
Answer:
I'd say C is the answer they want, though my pedantic side wants to argue for B being true as well.
The height attained by the ball is 11.86m
a ball is shot from the ground straight up into the air its initial and final velocity is
initial velocity, u = 50 ft/s = 50×0.305 = 15.25m/s
final velocity ,v = 0 m/s
gravity =-9.8 m/s²
( negative sign shows acceleration in opposite direction)
height =?
using the newton motion of equation
v² = u² + 2as
where
a= acceleration due to gravity(g)
s = height
v² = u² + 2gs
(0)² = (15.25)² + 2×(-9.8)×s
0 = (15.25)² - 19.6 × s
s= - (15.25)²/ 19.6
s = 11.86m
after ignoring the air resistance the maximum height of the ball is 11.86m
To learn more about motion under gravity -
brainly.com/question/27962354
#SPJ4