Answer:
look in the explanation part
Explanation:
In physics and chemistry, the law of conservation of energy states that the total energy of an isolated system remains constant; it is said to be conserved over time. This law means that energy can neither be created nor destroyed; rather, it can only be transformed or transferred from one form to another.
The energy released from 1 gram of uranium is more than 1 million times greater than the energy released from 3 grams of coal is True.
<u>Explanation:</u>
Nuclear Fission is the process in which splitting of a nucleus takes place that releases free neutrons and lighter nuclei. The fission of heavy elements like "Uranium is highly exothermic" and releases "200 million eV" compared to the energy that is released by burning coal which gives a few eV.
In the given example, it is obvious that the energy released from 1 gram of uranium is more than that of the energy released from 3 grams of coal because the amount of energy released during nuclear fission is millions of times more efficient per mass than that of coal considering only
part of the original nuclei is converted to energy.
Answer:
1 mole of sodium chloride ions
Explanation:
i hope this answer helps u
plz mark me as brainliest
Answer:
The correct option is: Br₂--------->2 Br(g)
Explanation:
Bond dissociation is a process in which energy is applied to break a chemical bond between the atoms of a molecule to give free atoms.
In the given reaction: Br₂-------->2 Br(g)
The covalent bond in Br₂ molecule dissociates to give two moles of bromine atoms. Therefore, it is a bond dissociation reaction.
Step 1: write the equation:
P₄(s) + 6F₂(g) → 4PF₃(g)
Step 2: Molar mass of P₄ = 30.97 g/mol × 4 = 123.88 g/mol
Step 3: Number of moles of phosphorus
n = m/M
n = 8.5 g/123.88g/mol
n = 0.07 moles
Step 4: 0.07 × 12 = 0.84 moles of fluorine.
Fluorine is diatomic gas so we multiplied the number of moles by 12.
Step 5: To find the mass of fluorine we multiply the number of moles with the molar mass.
Mass of fluorine = 0.84 × 228
= 191.52 grams.