Answer:
The percent composition of a component in a compound is the percent of the total mass of the compound that is due to that component. To calculate the percent composition of a component in a compound: Find the molar mass of the compound by adding up the masses of each atom.
Answer: 2.7 grams
Explanation:
According to the law of conservation of mass, mass can neither be created nor be destroyed. Thus the mass of products has to be equal to the mass of reactants. The number of atoms of each element has to be same on reactant and product side. Thus chemical equations are balanced.
Given: mass of sodium hydrogen carbonate = 3.4 g
mass of acetic acid = 10.9 g
Mass of reactants = mass of sodium hydrogen carbonate+ mass of acetic acid = 3.4 + 10.9= 14.3 g
Mass of reactants = Mass of products in reaction vessel + mass of carbon dioxide (as it escapes)
Mass of carbon dioxide = 14.3 - 11.6 =2.7 g
Thus the mass of carbon dioxide released during the reaction is 2.7 grams.
A substance through which an electrical current flows poorly would be said to be a poor conductor. That is, the substance has a low conductance (or conductivity). There’s a nuance between the two terms, but it shouldn’t matter for our purposes.
Since such a material resists the flow of electric charge, the material can be said to have a high resistance (or high resistivity).
Mathematically, resistance and conductance are reciprocals of one another; a low conductance implies a high resistance, and a high conductance implies a low resistance.
Mass of medicinal agent taken = 1.2 g
the volume is 60 mL
Specific gravity = 1.20
So the mass of solution = specific gravity X volume = 1.20 * 60 = 72g
Now if we have increased the volume by 0.2 so the new volume = 60.2
New mass = 72 + 1.2 = 73.2
Specific gravity = mass / volume = 73.2 / 60.2 = 1.22 g/mL
Answer:
d
Explanation:
some water evaporated and concentrated the salt