1. In this reaction, 2 moles of nitrogen gas reacts with 3 moles of oxygen gas to give 2 moles of N2O3 gas. 2 nitrogen molecules react with 3 oxygen molecules to give 2 N2O3 molecules. Under STP, one mole of an ideal gas occupies a volume of 22.4 liters. So in this reaction, 44.8 liters of nitrogen gas reacts with 67.2 liters of oxygen gas to give 44.8 liters of N2O3 gas. The total mass of the reactants (N2 and O2) is the same as the total mass of the product (N2O3). This is called mass balance of a chemical reaction.
2. According to the chemical reaction, 3 moles of chlorine gas produces 2 moles of iron(III) chloride. So, to produce 1 moles of iron(III) chloride, 3/2 (1.5) moles of chlorine gas is required. Therefore, to produce 14 moles of iron(III) chloride, 14 x 1.5 = 21 moles of chlorine is needed.
Answer:
There is no bar graph attached to this question, however, the question can be answered based on the information given in the question.
The answer is A) average level of happiness
Explanation:
In an experiment, the dependent variable is the variable which is measured by the experimenter. It is the variable that responds to changes made to another variable called independent variable.
In the case of this question, it can be determined, even without the bar graph, that the experiment entails how candy allowance affects a child's happiness. Hence, the candy allowance is changed to influence or cause a response in the child's happiness, which is then measured. Therefore, the AVERAGE LEVEL OF HAPPINESS is the dependent variable.
<span>Heavy metals like mercury enter waterways by industrial dumping and poor regulatioin of effluent, and they also enter soil through a similar manner, in which waste is disposed of imporperly. Another source of heavy metals are the gases leaving industry carrying these metals. The metals fall as a solid on to soil and water ways. Therefore, the answer is D.</span>
Answer:
Explanation:
<u>1) Find the z-scores:</u>
a) z-score for 22.6 inches length
- z = [ 22.6 - 20 ] / 2.6 = 1.00
b) z-score for 17.4 inches length
- z = [ 17.4 - 20 ] / 2.6 = - 1.00
<u>2) Probability</u>
Then, you have to find the probability that the length of an infant is between - 1.00 and 1.00 standards deviations (σ) from the mean (μ).
That is a well known value of 68%, which is part of the 68-95-99.7 empirical rule.
The most exact result is obtained from tables and is 68.26%:
- 1 - P (z ≥ 1.00) - P (z ≤ - 1.00) = 1 - 0.1587 - 0.1587 = 0.6826 = 68.26%