Moles= mass divided by molar mass
Molar mass= 12.01(4) + 1.01(10)
= 58.14g/mol
Moles=14.5g / 58.14g/mol
=0.249
Therefore there are approx 0.249 moles in a 14.5g sample of C4H10
Answer:
The weights of all elements are always compared to the Carbon-12.
Explanation:
The weights of all elements are always compared to the Carbon-12 because the mass of carbon is 12 which is the exactly the sum of protons and neutrons.
Oxygen was also considered the standard for some time but later this stander was rejected because in natural O¹⁷ and O¹⁸ were also present and this create the two different atomic mass tables.
AMU:
Atomic mass unit is define as the 1/12 the mass of an atom of carbon-12.
C12 has six neutron and six protons in the nucleus.
This unit is used to express the masses of atoms. We know that masses of atoms are very small and we do not have any such type of balance that can measure very small quantity. So that is way we use this scale to measure small quantity. For example, according to this scale
relative atomic mass of hydrogen is 1.008 amu
relative atomic mass of oxygen is 15.999 amu
relative atomic mass of uranium is 238.0289 amu
relative atomic mass of chlorine is 35.453 amu
Answer:
87.27 grams
Explanation:
The mole ratio of nitrogen to hydrogen is 1:3; while that one of hydrogen to the products (ammonia) is 3:2
Thus if 3 moles of hydrogen gas produce 2 moles of ammonia gas
7.7 moles of hydrogen will produce:
(7.7moles×2)/3
77/15 moles
1 mole of ammonia gas has a mass of 14+3=17
since the mass of an atom of nitrogen is 14 while that of hydrogen atom is 1.
Therefore 77/15 moles will have a mass of
77/15 moles × 17=87.27 grams
Answer:
1 mole of iron =6.023×10^23 particles
1 particles of iron=1/6.023×10^23 mole
7.46×10^25 particles =1/6.023×10^23×7.46×10^25
=1.238×10^48 mole is a required answer.