Hydrogen bonds are stronger than the dipole dipole attraction force present in any molecule.
<h3>What is bonding in molecules?</h3>
Bonding is a type of attraction force which is present between the different atoms or elements of any substance.
- Dipole dipole attraction force is a weak force as compared to the hydrogen bonding and present between any two oppositely charged atoms.
- Hydrogen bond is present between the hydrogen atom and more electronegative atoms like O, S, N and F.
Hence main difference is that hydrogen bond is only present between the hydrogen atom and more electronegative.
To know more about dipole-dipole force, visit the below link:
brainly.com/question/24197168
#SPJ4
Answer:
The new force will be \frac{1}{100} of the original force.
Explanation:
In the context of this problem, we're dealing with the law of gravitational attraction. The law states that the gravitational force between two object is directly proportional to the product of their masses and inversely proportional to the square of a distance between them.
That said, let's say that our equation for the initial force is:
![F = G\frac{m_1m_2}{R^2}The problem states that the distance decrease to 1/10 of the original distance, this means:[tex]R_2 = \frac{1}{10}R](https://tex.z-dn.net/?f=F%20%3D%20G%5Cfrac%7Bm_1m_2%7D%7BR%5E2%7D%3C%2Fp%3E%3Cp%3EThe%20problem%20states%20%20that%20%20the%20distance%20decrease%20to%201%2F10%20of%20the%20original%20distance%2C%20this%20means%3A%3C%2Fp%3E%3Cp%3E%5Btex%5DR_2%20%3D%20%5Cfrac%7B1%7D%7B10%7DR)
And the force at this distance would be written in terms of the same equation:

Find the ratio between the final and the initial force:

Substitute the value for the final distance in terms of the initial distance:

Simplify:

This means the new force will be \frac{1}{100} of the original force.
i gotchuuu i’m checking my answer now
The percent of O in Cr₂O₃ : 31.58%
<h3>Further explanation</h3>
Given
Cr = 52.00 amu, O = 16.00 amu
Required
The percent of O
Solution
MW Cr₂O₃ = 2 x Ar Cr + 3 x Ar O
MW Cr₂O₃ = 2.52+3.16
MW Cr₂O₃ =152 amu

It is 50. This is because heat goes from higher temperatures to lower and nothing else in the options is lower.