Answer:
2.2×10^8
Explanation:
Cu(OH)2(s)<---------> Cu^2+(aq) + 2OH^-(aq) Ksp=2.2 x 10 ^-20
2H3O^+(aq) + 2OH^-(aq) <-------> 4H2O(l). Kw= 1×10^14
Cu^2+(aq) + 4H2O(l) <--------> [Cu(H2O)4]^2+(aq)
Overall ionic reaction:
Cu(OH)2(s) +2H3O^+(aq) <---------> [Cu(H20)4]^2+(aq)
Equilibrium constant for the reaction: Ksp×Kw= 2.2 x 10 ^-20 × (1/(1×10^-14))^2
Keq= 2.2×10^8
Kw= ion dissociation constant of water
Classification of the Elements. The next thing in our review is to classify the elements into three groups. These three groups are: metals, nonmetals, and inert gases. Let's look at where these groups are located on the periodic table and correlate them with the ability to lose and gain electrons.
120mm is equal to 0.12 meters
Answer:
9.4
Explanation:
The equation for the reaction can be represented as:
+
⇄ 
The ICE table can be represented as:
+
⇄ 
Initial 0.27 0.49 0.0
Change -x -2x x
Equilibrium 0.27 - x 0.49 -2x x
We can now say that the concentration of
at equilibrium is x;
Let's not forget that at equilibrium
= 0.11 M
So:
x = [
] = 0.11 M
[
] = 0.27 - x
[
] = 0.27 - 0.11
[
] = 0.16 M
[
] = (0.49 - 2x)
[
] = (0.49 - 2(0.11))
[
] = 0.49 - 0.22
[
] = 0.27 M
![K_C = \frac{[CH_3OH]}{[CO][H_2]^2}](https://tex.z-dn.net/?f=K_C%20%3D%20%5Cfrac%7B%5BCH_3OH%5D%7D%7B%5BCO%5D%5BH_2%5D%5E2%7D)


= 9.4
∴ The equilibrium constant at that temperature = 9.4