Data analysis is a process of inspecting, cleansing, transforming and modeling data with the goal of discovering useful information, informing conclusions and supporting decision-making
The five main branches of chemistry are organic chemistry, inorganic chemistry, analytical chemistry, physical chemistry and biochemistry. Chemistry can be further divided into many sub-branches that may fall under more than one of the main branches.
This doesn't need an ICE chart. Both will fully dissociate in water.
Assume HClO4 and KOH reacts with one another. All you need to do is determine how much HClO4 will remain after the reaction. Calculate pH.
Step 1:
write out balanced equation for the reaction
HClO4+KOH ⇔ KClO4 + H2O
the ratio of HClO4 to KOH is going to be 1:1. Each mole of KOH we add will fully react with 1 mole of HClO4
Step 2:
Determining the number of moles present in HClO4 and KOH
Use the molar concentration and the volume for each:
25 mL of 0.723 M HClO4
Covert volume from mL into L:
25 mL * 1L/1000mL = 0.025 L
Remember:
M = moles/L so we have 0.025 L of 0.723 moles/L HClO4
Multiply the volume in L by the molar concentration to get:
0.025L x 0.723mol/L = 0.0181 moles HClO4.
Add 66.2 mL KOH with conc.=0.273M
66.2mL*1L/1000mL = .0662 L
.0662L x 0.273mol/L = 0.0181 moles KOH
Step 3:
Determine how much HClO4 remains after reacting with the KOH.
Since both reactants fully dissociate and are used in a 1:1 ratio, we just subtract the number of moles of KOH from the number of moles of HClO4:
moles HClO4 = 0.0181; moles KOH = 0.0181, so 0.0181-0.0181 = 0
This means all of the HClO4 is used up in the reaction.
If all of the acid is fully reacted with the base, the pH will be neutral = 7.
Determine the H3O+ concentration:
pH = -log[H3O+]; [H3O+] = 10-pH = 10-7
The correct answer is 1.0x10-7.
Answer:
The length of the wire = 352.66 feet.
Explanation:
A copper refinery produces a copper ingot weighing 150 lb. If the copper is drawn into wire whose diameter is 9.50 mm, how many feet of copper can be obtained from the ingot? The density of copper is 8.94 g/cm3. (Assume that the wire is a cylinder whose volume is V = πr2h, where r is the radius and h is its height or length.)
Step 1: Convert lb to kg
150 lb = 68.0389 kg
Step 2: Calculate volume of copper
Volume = mass / density
Volume = 68038.9 grams / 8.94 g/cm³
Volume = 7610.6 cm³ Cu
Step 3: Calculate length of wire
The diameter of the wire is 9.50 mm, so the radius is half of that (4.75 mm), or 0.475 cm.
The total "volume" of the wire is πr²h = (π)*(0.475 cm)²(h) = 0.708h = 7610 cm^3
7610 = 0.708h
h = 10749 cm = length of wire
The length of the wire = 352.66 feet.
Answer:
The answer to your question is 0.10 M
Explanation:
Data
Molarity = ?
mass of Sucrose = 125 g
volume = 3.5 l
Formula
Molarity = moles / volume
Process
1.- Calculate the molar mass of sucrose
C₁₂H₂₂O₁₁ = (12 x 12) + (1 x 22) + (16 x 11)
= 144 + 22 + 176
= 342 g
2.- Convert the mass of sucrose to moles
342 g of sucrose ------------------- 1 mol
125 g of sucrose -------------------- x
x = (125 x 1) / 342
x = 0.365 moles
3.- Calculate the molarity
Molarity = 0.365 / 3.5
4.- Result
Molarity = 0.10