I think it would be these three answers ionic , covalent , and polar covalent
<u>Answer:</u> 2.00 atm
<u>Explanation:</u>
The gas is kept under the same temperature in this problem. Assuming the amount of gas is constant, we can apply the Boyle's law.
The Boyle's law equation,
P₁V₁ = P₂V ₂
Plug in the values,
1.00 atm x 4.0 L = P₂ x 2.0 L
Simplify,
4.00 atm L = 2 P₂ L
Now flip the equation,
2 P₂ L = 4.00 atm L
Dividing both sides by 2 we get,
P₂ = 2.00 atm
I think that it is D because the higher the molecular mass, the higher it's boiling point. I hope that helped:) Bye!
Answer : The net ionic equation will be:

Explanation :
Complete ionic equation : In complete ionic equation, all the substance that are strong electrolyte and present in an aqueous are represented in the form of ions.
Net ionic equation : In the net ionic equations, we are not include the spectator ions in the equations.
Spectator ions : The ions present on reactant and product side which do not participate in a reactions. The same ions present on both the sides.
The balanced molecular equation will be,

The complete ionic equation in separated aqueous solution will be,

In this equation the species,
are the spectator ions.
By removing the spectator ions , we get the net ionic equation.
The net ionic equation will be:

The answer is AIM NOT POSTIVE