Answer:Time constant gets doubled
Explanation:
Given
L-R circuit is given and suppose R and L is the resistance and inductance of the circuit then current is given by
![i=i_0\left [ 1-e^{-\frac{t}{\tau }}\right ]](https://tex.z-dn.net/?f=i%3Di_0%5Cleft%20%5B%201-e%5E%7B-%5Cfrac%7Bt%7D%7B%5Ctau%20%7D%7D%5Cright%20%5D)
where
is maximum current
i=current at any time


thus if inductance is doubled then time constant also gets doubled or twice to its original value.
Answer: The correct answer is-15 Volts.
Explanation-
Voltage of a battery can be defined as the difference in electric potential that lies between the positive and negative terminals of a battery.
It can be calculated using Ohm's law, which states that the electric potential difference between two points on a circuit is equal to the product of the current that flows between the two points (I) and the total resistance that sis present between the two points. It can be mathematically depicted as-
ΔV = I • R
Putting the value of 'I' and 'R', we get-
ΔV = 5 X 3
= 15 V
ANSWER:
5
Explanation:
Because they are elven in numbers
Answer:
The number of freely-moving neutrons decreases over time.
The number of freely-moving neutrons decreases over time.
Explanation:
99.0km/h =27.5m/s (this is the initial speed)
The final speed is zero
The distance is 50.0m
Therefore you use the formula:
vfinal²=vinitial²+2ad
a=(vfinal²-vinitial²)/2d
= (0²-27.5²)/(2x50.0)
=-7.5625 or in correct sigdigs -7.56m/s²
Hope this helps!