1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Zolol [24]
3 years ago
14

An oscillator consists of a block of mass 0.373 kg connected to a spring. When set into oscillation with amplitude 33 cm, the os

cillator repeats its motion every 0.412 s. Find the (a) period, (b) frequency, (c) angular frequency, (d) spring constant, (e) maximum speed, and (f) magnitude of the maximum force on the block from the spring.
Physics
1 answer:
aniked [119]3 years ago
3 0

Answer:

(a)  T = 0.412s

(b)  f = 2.42Hz

(c)  w = 15.25 rad/s

(d)  k = 86.75N/m

(e)  vmax = 5.03 m/s

Explanation:

Given information:

m: mass of the block = 0.373kg

A: amplitude of oscillation = 22cm = 0.22m

T: period of oscillation = 0.412s

(a) The period is the time of one complete oscillation = 0.412s

The period is 0.412s

(b) The frequency is calculated by using the following formula:

f=\frac{1}{T}=\frac{1}{0.412s}=2.42Hz

The frequency is 2.42 Hz

(c) The angular frequency is:

\omega=2\pi f=2\pi (2.42Hz)=15.25\frac{rad}{s}

The angular frequency is 15.25 rad/s

(d) The spring constant is calculated by solving the following equation for k:

\omega=\sqrt{\frac{k}{m}}\\\\k=m\omega^2=(0.373kg)(15.25rad/s)^2=86.75\frac{N}{m}

The spring constant is 86.75N/m

(e) The maximum speed is:

v_{max}=\omega A=(15.25rad/s)(0.33m)=5.03\frac{m}{s}

(f) The maximum force applied by the spring if for the maximum elongation, that is, the amplitude:

F=kA=(86.75N/m)(0.2m)=17.35N

The maximum force that the spring exerts on the block is 17.35N

You might be interested in
Rank the following objects by their accelerations down an incline (assume each object rolls without slipping) from least to grea
Alexxx [7]

Answer:

acceleration are

     hollow cylinder < hollow sphere < solid cylinder < solid sphere

Explanation:

To answer this question, let's analyze the problem. Let's use conservation of energy

Starting point. Highest point

          Em₀ = U = m g h

Final point. To get off the ramp

          Em_f = K = ½ mv² + ½ I w²

notice that we include the kinetic energy of translation and rotation

         

energy is conserved

        Em₀ = Em_f

        mgh = ½ m v² +1/2 I w²

angular and linear velocity are related

         v = w r

         w = v / r

we substitute

          mg h = ½ v² (m + I / r²)

          v² = 2 gh   \frac{m}{m+ \frac{I}{r^2} }

          v² = 2gh    \frac{1}{1 + \frac{I}{m r^2} }

this is the velocity at the bottom of the plane ,, indicate that it stops from rest, so we can use the kinematics relationship to find the acceleration in the axis ax (parallel to the plane)

         v² = v₀² + 2 a L

where L is the length of the plane

         v² = 2 a L

         a = v² / 2L

we substitute

         a = g \ \frac{h}{L} \  \frac{1}{1+ \frac{I}{m r^2 } }

let's use trigonometry

         sin θ = h / L

         

we substitute

         a = g sin θ   \ \frac{h}{L} \  \frac{1}{1+ \frac{I}{m r^2 } }

the moment of inertia of each object is tabulated, let's find the acceleration of each object

a) Hollow cylinder

      I = m r²

we look for the acerleracion

      a₁ = g sin θ    \frac{1}{1 + \frac{mr^2 }{m r^2 } }1/1 + mr² / mr² =

      a₁ = g sin θ    ½

b) solid cylinder

       I = ½ m r²

       a₂ = g sin θ  \frac{1}{1 + \frac{1}{2}  \frac{mr^2}{mr^2} } = g sin θ   \frac{1}{1+ \frac{1}{2} }

       a₂ = g sin θ   ⅔

c) hollow sphere

     I = 2/3 m r²

     a₃ = g sin θ   \frac{1}{1 + \frac{2}{3} }

     a₃ = g sin θ \frac{3}{5}

d) solid sphere

     I = 2/5 m r²

     a₄ = g sin θ  \frac{1 }{1 + \frac{2}{5} }

     a₄ = g sin θ  \frac{5}{7}

We already have all the accelerations, to facilitate the comparison let's place the fractions with the same denominator (the greatest common denominator is 210)

a) a₁ = g sin θ ½ = g sin θ      \frac{105}{210}

b) a₂ = g sinθ ⅔ = g sin θ     \frac{140}{210}

c) a₃ = g sin θ \frac{3}{5}= g sin θ       \frac{126}{210}

d) a₄ = g sin θ \frac{5}{7} = g sin θ      \frac{150}{210}

the order of acceleration from lower to higher is

   

     a₁ <a₃ <a₂ <a₄

acceleration are

     hollow cylinder < hollow sphere < solid cylinder < solid sphere

8 0
3 years ago
Type of energy transformed into chemical energy by plants is called type of energy transformed into chemical energy by plants is
yuradex [85]
I think the correct answer is light energy. It is light energy that is transformed into chemical energy by plants by the process called photosynthesis. In this process, plants<span> take in water, carbon dioxide, and sunlight and </span>turn<span> them </span>into<span> glucose and oxygen.</span>
6 0
3 years ago
1. The geologic time scale divides time into years and centuries, true or false
hodyreva [135]

Answer:

The answer is "False"

Explanation:

The geologic time scale is the "schedule" for occasions in Earth history. It partitions time into named units of unique time called in descending order of duration "eons, eras, periods, epochs, and ages". The specification of those geologic time units depends on stratigraphy, which is the relationship and order of rock layers. The fossil structures that happen in the stones, nonetheless, give the central methods for setting up a geologic time scale, with the circumstance of the development and vanishing of far and wide species from the fossil record being used to outline the beginnings and endings of ages,, periods, and different stretches.

Geologic time is the broad time period involved by the geologic history of Earth. Formal geologic time starts toward the beginning of the Archean Eon (4.0 billion to 2.5 billion years back) and proceeds to the current day.

5 0
3 years ago
What force caused the movements of the continents from one supercontinent to their present positions
AVprozaik [17]
The convection currents in the mantle caused the crust on top to break apart & go different directions.
6 0
3 years ago
A car with a momentum of 3,200 kg-m/s moves foward at a rate of 2 m/s. What is the mass of the vehicle?
natulia [17]

Answer:

1600 kg

Explanation:

use the formula p=mv. p=3200, v=2. Plug in and rearrange.

3200=(m)(2)

m= 3200/2

m=1600

5 0
2 years ago
Other questions:
  • HURRY! ILL MARK YOU AS BRAINLIEST, RATE YOU A 5 AND THANK YOU! 50 POINTS!
    9·2 answers
  • Can things of aluminum have a greater mass than things made of iron?
    12·1 answer
  • Which method of testing substances is a sure way to identify a chemical reaction?
    8·2 answers
  • A circular disk of radius 2.0 m rotates, starting from rest, with a constant angular acceleration of 20.0 rad/s2 . What is the t
    11·1 answer
  • NEED ANSWER IMMEDIANTELY What is the net force on this object? A) 0N it is balanced B) 200N down C) 400N up D) 600N down
    13·2 answers
  • Which of the following is NOT an upper body stretch
    14·1 answer
  • In the chemical equation above, the small number after the O in 1202 represent —
    10·1 answer
  • You are running late for class and are still in the hallway when the bell rings. The tardy bell is right outside your classroom
    8·1 answer
  • When a substance gains electrons, is it positively or negatively charged?
    6·1 answer
  • 1) When you hold your nose and go underwater, you can still hear sounds that are made above the water, in the air, if they are l
    5·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!