Answer:
The procedure for calculating the pH of a solution of a weak base is similar to that of the weak acid in the sample problem. However, the variable x will represent the concentration of the hydroxide ion. The pH is found by taking the negative logarithm to get the pOH, followed by subtracting from 14 to get the pH.
Explanation:
Answer:
Number of moles = 2.89 mol
Explanation:
Given data:
Number of moles of sugar = ?
Mass of sugar = 990 g
Solution:
Formula:
Number of moles = mass/molar mass
Molar mass of C₁₂H₂₂O₁₁:
12× 12 + 22×1.008 + 16×11 = 342.2 g/mol
Number of moles = 990 g / 342.2 g/mol
Number of moles = 2.89 mol
Answer:
33.3gtts/min
Explanation:
We can find the drops/minute with common proportions.
100cc/1hr * 200gtts/1cc * 1hr/60min ≈ 33.3gtts/min
Best of Luck!
Answer:
7.96g, 33.79%
Explanation:
I'll try my best to explain the entire process behind this question ;)
From the question, you can write the reaction

Now, there are a few reasons it is like this. Oxygen is a diatomic element, meaning it doesn't and can't exist as just O. It exists as O₂. To balance, this, double the amount of water and hydrogen so there is an equal amount of each element on both sides of the reaction (4 H's, 2 O's on the reactant side, and 4 H's, 2 O's on the product side).
From this we can get a mole-to-mole ratio.
Onto the stoichiometry. Our goal in this is to convert from grams of water to grams of hydrogen, and we do so with a mole to mole ratio.

Basically, what I did was divide by water's molar mass to get moles of water, multiplied by the mole-to-mole ratio (2:2) to get moles of H2, and then multiplied by H2's molar mass to get what should be the amount of H2 produced by the reaction.
For percent yield, you can calculate it is such:

Plug the numbers in:

So, the percent yield is 33.79%
3.52g BiCl3 × 1 mol BiCl3/ 315.34g BiCl3 × 3 mol Cl/ 2 mol BiCl3 × 70.906g Cl/ 1 mol Cl= 1.187 g Cl