Answer:
See below
Explanation:
Molecular formula ( just write down all of the elements ) C 4 H4 O4
Empiracle formual CHO
"Molecular formulas tell you how many atoms of each element are in a compound, and empirical formulas tell you the simplest or most reduced ratio of elements in a compound"
Answer:
35.6 liters at STP
Explanation:
The molar mass of carbon dioxide is about 44.01 g/mol. The volume of a mole of ideal gas at STP is 22.4 L, so the volume of 70.0 g will be ...
(70.0g)/(44.01 g/mol)·(22.4 L/mol) ≈ 35.6 L
Answer:
126.8, Iodine
Explanation:
- mass ×abundance/100
- (126.9045×80.45/100)+(126.0015×17.23/100)+(128.2230×2.23/100)
- 102.1+21.7+3=126.8
<em>IODINE</em><em> </em><em>has</em><em> </em><em>an</em><em> </em><em>atomic</em><em> </em><em>mass</em><em> </em><em>of</em><em> </em>126.8 or 126.9
Answer:density
Explanation:
it’s how’s how dens the ball is
Answer:
C.) No. of electrons
Explanation:
A.) is incorrect. The atomic number represents the number of protons in an element. Nitrogen (N) and sodium (Na) always have a differing amount of protons.
B.) is incorrect. The mass number represents the number of protons and neutrons in an element. The number of neutrons and protons are specific to each element (disregarding isotopes). When elements ionize, these amounts are not altered.
C.) is correct. When an element becomes an ion, the number of electrons change. When nitrogen gains 3 electrons and sodium loses 1 electron, they end up having the same number of electrons (10).
D.) is incorrect. When elements ionize, the number of neutrons does not change. The only way two different elements could have the same number of neutrons is if at least one of the elements is an isotope. Isotopes are two or more atoms of the same element that differ in their amounts of neutrons.