Answer:
Relative humidity is low .
Explanation:
The wet bulb reads low temperature because due to low humidity of atmosphere , evaporation of water takes place from the wet bulb which makes the bulb cool and therefore it reads lower temperature . In the process of evaporation , heat equal to latent heat of vaporization is taken from the bulb and it loses temperature.
Answer:
97 J
Explanation:
Step 1: Given data
- Mass of the sample (m): 12 kg
- Specific heat capacity (c): 0.231 J/kg.°C (this can also be expressed as 0.231 J/kg.K)
- Initial temperature: 45 K
Step 2: Calculate the temperature change
ΔT = 80 K - 45 K = 35 K
Step 3: Calculate the heat required (Q)
We will use the following expression.
Q = c × m × ΔT
Q = 0.231 J/kg.K × 12 kg × 35 K = 97 J
Zeff = Z - S
Here, Z is the number of protons in the nucleus, that is, atomic number, and S is the number of nonvalence electrons.
For boron, the electronic configuration is 1s₂ 2s₂ 2p₄
Z = 5, S = 2
Zeff = 5-2 = +3
For O, electronic configuration is 1s₂ 2s₂ 2p₄
Z = 8, S = 2
Zeff = 8-2 = +6
Hence, the correct answer is second option, that is, +3 and +6, the Zeff of boron is smaller in comparison to O, thus, boron exhibits a bigger size than O.
Answer: Inversely , Directly
Explanation:
The energy of a photon is inversely proportional to its wavelength and directly proportional to its frequency.
As can be seen from this equation;
E = hv = h c / ∧
Where E = Energy of a photon
v = Frequency
h = Planck Constant
c = speed of light
∧ = Wave length
The included angle, i.e. If two pairs of sides of two triangles are in proportion, and the included angles are equal, then the triangles are similar.