1. The answer is option E, that is None of the above is correct.
As a polymer becomes more crystalline,
its melting point doesn't decreases, its density doesn't decreases, its stiffness doesn't decreases and its yield stress doesn't decreases.
2. The answer is option B, that is the molecules are arranged in sheets, with their long axes parallel and their ends aligned as well.
In the smectic A liquid-crystalline phase, molecules are arranged in sheets, with their long axes parallel and their ends aligned as well.
3. For a substitutional alloy to form, the two metals combined must have similar atomic radii and chemical bonding properties.
I had the same question, it's most likely B.
Answer: Theoretical yield of
produced by 8.96 g of S is 33.6 g
Explanation:
To calculate the moles :


The balanced chemical equation is:
According to stoichiometry :
2 moles of
produce = 3 moles of 
Thus 0.28 moles of
will produce=
of
Mass of 
Thus theoretical yield of
produced by 8.96 g of S is 33.6 g
<u>Answer:</u> The mass of methanol that must be burned is 24.34 grams
<u>Explanation:</u>
We are given:
Amount of heat produced = 581 kJ
For the given chemical equation:

By Stoichiometry of the reaction:
When 764 kJ of heat is produced, the amount of methanol reacted is 1 mole
So, when 581 kJ of heat will be produced, the amount of methanol reacted will be = 
To calculate mass for given number of moles, we use the equation:

Moles of methanol = 0.7605 moles
Molar mass of methanol = 32 g/mol
Putting values in above equation, we get:

Hence, the mass of methanol that must be burned is 24.34 grams
Answer:
heat
Explanation:
because it's the cause of change