<em>when </em><em>South </em><em>and </em><em>North </em><em>poles </em><em>are </em><em>placed </em><em>together </em><em>they </em><em>attract </em><em>as </em><em>they </em><em>are </em><em>opposite</em><em> </em><em>poles. </em><em>In</em><em> </em><em>magnets </em><em>opposite </em><em>po</em><em>l</em><em>es </em><em>are </em><em>attracted </em><em>and </em><em>like </em><em>poles </em><em>are </em><em>repelled. </em>
Answer:
<em>A very high metabolism and a very small size.</em>
<em></em>
Explanation:
The pygmy shrew is a very small mammal, that forages day and night. The metabolism of the Pygmy shrew is so high that it must eat at least every 30 minutes or it might die. The best explanation for what happens to the food's mass and energy is that most of the food mass is rapidly used fro building up of the shrew due to its very high metabolism, and a bigger portion of the food is lost from the surface of the body of the shrew, due to its very small size. The combination of these two factors; a very high metabolism (rapidly uses up food material, and generates a large amount of heat in a very short time) and the very small size (makes heat loss due to surface area to volume ratio high) explains what happens to the food mass and energy.
Answer:
SKID
Explanation:
In general, airplane tracks are flat, they do not have cant, consequently the friction force is what keeps the bicycle in the circle.
Let's use Newton's second law, let's set a reference frame with the horizontal x-axis and the vertical y-axis.
Y axis y
N- W = 0
N = W
X axis (radial)
fr = m a
the acceleration in the curve is centripetal
a =
the friction force has the expression
fr = μ N
we substitute
μ mg = m v²/r
v =
we calculate
v =
v = 1,715 m / s
to compare with the cyclist's speed let's reduce to the SI system
v₀ = 18 km / h (1000 m / 1 km) (1 h / 3600 s) = 5 m / s
We can see that the speed that the cyclist is carrying is greater than the speed that the curve can take, therefore the cyclist will SKID
Answer:6m/s^2
Explanation:
Mass =3kg
Force=18N
Acceleration =force ➗ mass
Acceleration =18 ➗ 3
Acceleration =6
Acceleration =6m/s^2
Answer:
The light bends away from the normal
Explanation:
We can solve the problem by using Snell's law:

where:
is the index of refraction of the first medium
is the index of refraction of the second medium
is the angle of incidence (angle between the incoming ray and the normal to the interface)
is the angle of refraction (angle between the outcoming ray and the normal to the interface)
We can rearrange the equation as

In this problem, light travels from an optically denser medium to an optically rarer medium, so

Therefore, the term
is greater than 1, so

which means that the angle of refraction is greater than the angle of incidence, and so the light will bend away from the normal.