Answer:
0.243 m/s
Explanation:
From law of conservation of motion,
mu+m'u' = V(m+m')................. Equation 1
Where m = mass of the first car, m' = mass of the second car, initial velocity of the first car, u' = initial velocity of the second car, V = Final velocity of both cars.
make V the subject of the equation
V = (mu+m'u')/(m+m')................. Equation 2
Given: m = 260000 kg, u = 0.32 m/s, m' = 52500 kg, u' = -0.14 m/s
Substitute into equation 2
V = (260000×0.32+52500×(-0.14))/(260000+52500)
V = (83200-7350)/312500
V = 75850/312500
V = 0.243 m/s
Answer:
Ф_cube /Ф_sphere = 3 /π
Explanation:
The electrical flow is
Ф = E A
where E is the electric field and A is the surface area
Let's shut down the electric field with Gauss's law
Фi = ∫ E .dA =
/ ε₀
the Gaussian surface is a sphere so its area is
A = 4 π r²
the charge inside is
q_{int} = Q
we substitute
E 4π r² = Q /ε₀
E = 1 / 4πε₀ Q / r²
To calculate the flow on the two surfaces
* Sphere
Ф = E A
Ф = 1 / 4πε₀ Q / r² (4π r²)
Ф_sphere = Q /ε₀
* Cube
Let's find the side value of the cube inscribed inside the sphere.
In this case the radius of the sphere is half the diagonal of the cube
r = d / 2
We look for the diagonal with the Pythagorean theorem
d² = L² + L² = 2 L²
d = √2 L
we substitute
r = √2 / 2 L
r = L / √2
L = √2 r
now we can calculate the area of the cube that has 6 faces
A = 6 L²
A = 6 (√2 r)²
A = 12 r²
the flow is
Ф = E A
Ф = 1 / 4πε₀ Q/r² (12r²)
Ф_cubo = 3 /πε₀ Q
the relationship of these two flows is
Ф_cube /Ф_sphere = 3 /π