Answer:
a. 150 N
Explanation:
Gravitational Force: This is the force that act on a body under gravity.
The gravitational force always attract every object on or near the earth's surface. The earth therefore, exerts an attractive force on every object on or near it.
The S.I unit of gravitational force is Newton(N).
Mathematically, gravitational force of attraction is expressed as
(i) F = GmM/r² ........................ Equation 1 ( when it involves two object of different masses on the earth)
(ii) F = mg ............................... Equation 2 ( when it involves one mass and the gravitational field).
Given: m = 17 kg, g = 8.8 m/s²
Substituting into equation 2,
F = 17(8.8)
F = 149.6 N
F ≈ 150 N.
Thus the gravitational force = 150 N
The correct option is a. 150 N
Answer:
option (D
Explanation:
Torque is given by
torque = N x i x A x B x sinФ
where, N is number of turns, A is area, b is the magnetic field and Ф be the angle between the area vector and the magnetic field vector, i be the current.
So, torque depends on the current.
option (D)
It might be radiation and reflection but I’m not sure
Answer:
8 Hz, 48 Hz
Explanation:
The standing waves on a string (or inside a pipe, for instance) have different modes of vibrations, depending on how many segments of the string are vibrating.
The fundamental frequency of a standing wave is the frequency of the fundamental mode of vibration; then, the higher modes of vibration are called harmonics. The frequency of the n-th harmonic is given by

where
is the fundamental frequency
In this problem, we know that the wave's third harmonic has a frequency of

This means this is the frequency for n = 3. Therefore, we can find the fundamental frequency as:

Now we can also find the frequency of the 6-th harmonic using n = 6:

Answer:

Explanation:
We are given that


Net force=F=
Mass,m=1.21 kg
Radius,r=0.723 m
We have to find the magnitude of its angular acceleration.
Moment of inertia ,
Substitute the values
Torque ,



