Answer:
v = 0.84m/s, v(max)= 0.997m/s
Explanation:
Initial work done by the spring, where c is the compression = 0.28m:

Work lost to friction:

Energy:

(a) Solve for v:

(b) Solve
for x:

if:



Answer:
I = 16amp
Explanation:
Charge coulomb ( Q ) = It
Where I =current in ampere
t = time = 5 seconds
80 = I × 5
I = 80/5
I = 16amp
The current through the circuit will be I = 16amp
The net electric force acting on a positive test charge at the origin is determined as ¹/₉(kq₁q₂).
<h3>
Net electric force on the charges</h3>
The net electric force on the charges is calculated as follows;
F = kq₁q₂/r²
where;
- k is coulomb's constant
- q₁ and q₂ are the charges
- r is the distance between the charges
<h3>Distance between the charges</h3>


Thus, the net electric force acting on a positive test charge at the origin is determined as ¹/₉(kq₁q₂).
Learn more about electric force here: brainly.com/question/17692887
#SPJ1