From an energy balance, we can use this formula to solve for the angular speed of the chimney
ω^2 = 3g / h sin θ
Substituting the given values:
ω^2 = 3 (9.81) / 53.2 sin 34.1
ω^2 = 0.987 /s
The formula for radial acceleration is:
a = rω^2
So,
a = 53.2 (0.987) = 52.494 /s^2
The linear velocity is:
v^2 = ar
v^2 = 52.949 (53.2) = 2816.887
The tangential acceleration is:
a = r v^2
a = 53.2 (2816.887)
a = 149858.378 m/s^2
If the tangential acceleration is equal to g:
g = r^2 3g / sin θ
Solving for θ
θ = 67°
<span>D. price ceiling
</span><span>This is a government regulation that establishes a maximum price for a particular good.</span><span>
</span>
Answer:
890 N
Explanation:
Acceleration is change in velocity over change in time.
a = Δv / Δt
a = (11 m/s − 0 m/s) / 0.26 s
a = 42.3 m/s²
Force is mass times acceleration.
F = ma
F = (21 kg) (42.3 m/s²)
F ≈ 890 N
I don't like the wording of any of the choices on the list.
SONAR generates a short pulse of sound, like a 'peep' or a 'ping',
focused in one direction. If there's a solid object in that direction,
then some of the sound that hits it gets reflected back, toward the
source. The source listens to hear if any of the sound that it sent
out returns to it. If it hears its own 'ping' come back, it measures
the time it took for the sound to go out and come back. That tells
the SONAR equipment that there IS a solid object in that direction,
and also HOW FAR away it is.
RADAR works exactly the same way, except RADAR uses radio waves.
Friction? For example, like when a car's tires skid on rough concrete.