Answer:
An increase in pressure
Explanation:
The ideal gas law states that:

where
p is the gas pressure
V is the volume
n is the number of moles
R is the gas constant
T is the temperature of the gas
in the equation, n and R are constant. For a gas kept at constant volume, V is constant as well. Therefore, from the formula we see that if the temperature (T) is increase, the pressure (p) must increase as well.
Answer:
(a) 
(b) 142
(c) 
(d) 96.8 mph
(e) 0.426 s
(f) 0.061 rad
Explanation:
Velocity is a time-derivative of position.
(a) 

(b) Since
is independent of
, it follows it was constant throughout. Hence, at any point or time, the horizontal velocity is 142.
(c) 

(d) When it passes the home plate, the ball has travelled 60.5 ft (from the question). This is horizontal, so it is equivalent to
.

.
In this time, the vertical velocity,
is

The speed of the ball at thus point is
ft/s
To convert this to mph, we multiply the factor 3600/5280

(e) The time has been determined from (d) above.

(f) This angle is given by

(Note here we are considering the acute angle so we ignore the negative sign)
In radians, this is

answer
64 is C (c) 1-Bromo-3-methylbutane
63 is D
i is secondary ii is primary
Answer:
the speed of something in a given direction.
Explanation:
3.4814815 (or 3 13/27) m/s
speed = distance/time
3.4814815 (or 3 13/27) = 94/27