The enthalpy change of the reaction below (ΔHr×n , in kJ) using the bond energies provided. CO(g) + Cl₂(g) → Cl₂CO(g). is - 108kJ.
The bond energies data is given as follows:
BE for C≡O = 1072 kJ/mol
BE for Cl-Cl = 242 kJ/mol
BE for C-Cl = 328 kJ/mol
BE for C=O = 766 kJ/mol
The enthalpy change for the reaction is given as :
ΔHr×n = ∑H reactant bond - ∑H product bond
ΔHr×n = ( BE C≡O + BE Cl-Cl) - ( BE C=O + BE 2 × Cl-Cl )
ΔHr×n = ( 1072 + 242 ) - ( 766 + 656 )
ΔHr×n = 1314 - 1422
ΔHr×n = - 108 kJ
Thus, The enthalpy change of the reaction below ( ΔHr×n , in kJ) using the bond energies provided. CO(g) + Cl₂(g) → Cl₂CO(g). is - 108kJ.
To learn more about enthalpy here
brainly.com/question/13981382
#SPJ1
Answer:
357.475
Explanation:
First you need periodic table and you have to look for mass
Fe = 3 x 55.845 = 167.535
P = 2 x 30.97 = 61.94
o = 4 x 2 so 8 oxygen = 8 x 16 = 128
add all and you get 357.475
Answer:
See explanation below
Explanation:
The melting point (the temperature that it changes from solid to liquid) of a pure substance depends on its mass, the forces between its molecules, and the pressure of the system.
The melting point, or the freezing point, of a mixture, is a temperature between the melting point of its components. Salt has a huge negative melting point, so when it is added to the water, the melting point decreases from 0ºC to -21ºC approximately.
So, the water will only freeze again if the temperature becomes below -21ºC which is very difficult to happen.