Solid! The molecules in solid matter are arranged closely together and packed quite tightly to maintain a regular shape. Hope this helps!
Answer:
1461.7 g of AgI
Explanation:
We'll begin by writing the balanced equation for the reaction. This is given below:
CaI₂ + 2AgNO₃ —> 2AgI + Ca(NO₃)₂
From the balanced equation above,
1 mole of CaI₂ reacted to produce 2 moles of AgI.
Next, we shall determine the number of mole AgI produced by the reaction of 3.11 moles of CaI₂. This can be obtained as follow:
From the balanced equation above,
1 mole of CaI₂ reacted to produce 2 moles of AgI.
Therefore, 3.11 moles of CaI₂ will react to produce = 3.11 × 2 = 6.22 moles of AgI
Finally, we shall determine the mass of 6.22 moles of AgI. This can be obtained as follow:
Mole of AgI = 6.22 moles
Molar mass of AgI = 108 + 127
= 235 g/mol
Mass of AgI =?
Mass = mole × molar mass
Mass of AgI = 6.22 × 235
Mass of AgI = 1461.7 g
Therefore, 1461.7 g of AgI were obtained from the reaction.
Fungus aren’t plants
Also this is what I found in the internet: „Ferns are plants. They look quite similar with lichens (e.g. Lobaria sp.) and like fungi, they bear spores underneath the fronds. However, ferns do not get nourishment from decaying matter ( some fungi species does) but undergoes photosynthesis like other plants.“
Answer:
Hb would be 78.4% saturated.
Explanation:
This problem can be solved by using simple unitary method.
At 100 mm Hg pressure of oxygen, Hb is saturated by 98%
So, at 1 mm Hg pressure of oxygen, Hb is saturated by
%
Hence, at 80 mm Hg pressure of oxygen, Hb is saturated by
% or 78.4%
Therefore, at 80 mm Hg pressure of oxygen in the lungs, Hb would be 78.4% saturated.