Answer:
The Kinetic energy and mass are _directly_ proportional.
Explanation:
We know that Kinetic Energy is basically termed as the capacity of a body to do work.
Kinetic energy is often used to associate with moving objects, therefore, K.E is normally termed as the energy of motion.
The formula of K.E of an object of mass and velocity is defined
K.E = 1/2mv²
From the formula, it is clear that K.E is directly proportional to its mass and also directly proportional to the square of its velocity.
For example,
If A toy plane with a mass of 10 kg is flying at 20 m/s. Its K.E will be:
K.E = 1/2mv²
= 1/2(10)(20)²
= 1/2(10)(400)
= 5(400)
= 2000 J
Now, let suppose, if we double the mass of a toy plane i.e.
m = 20 kg
so
K.E = 1/2mv²
= 1/2(20)(20)²
= 1/2(20)(400)
= 10(400)
= 400 J
Therefore, the K.E is doubled when doubled the mass.
Therefore, the Kinetic energy and mass are _directly_ proportional.
Answer:
The value is
Explanation:
From the question we are told that
The velocity is [/tex]
The time taken is
The time taken for contact is
The velocity of the of the car after contact is [/tex]
From the equation of kinematics we have that
Here u = 0 \ m/s since the car is initially motionless
=>
=>
Heat lost or gained, H = mc(θ₂ - θ₁)
Where m = mass, c = Specific heat capacity, θ₂= final temperature, θ₁ = initial temperature
m = 200g, c = 0.444 J/g°C, θ₁ = 22 °C (Since it was cooled).
H = 6.9 kj = 6.9 *1000J = 6900 J
6900 = 200*0.444* (θ₂ - 22)
6900/(200*0.444) = θ₂ - 22
77.70 = θ₂ - 22
θ₂ - 22 = 77.7
θ₂ = 77.7 + 22 = 99.7
So initial temperature before cooling ≈ 100°C . Option C.
Membrane potential, it’s the difference in electrical charge across the membrane.
Answer:
Given:
Bone density = 2.0 kg/m³
Volume of bone (V) = 0.00027 m³
To Find:
Mass of an adult femur bone (m).
Explanation: