Answer:
uujjjjjctc7tox7txr9ll8rz8lr5xl8r6l8dl85x8rl5x8rl5x8rl5xrx8l58rk5xr8l5xr6l8xr68lc
Step 1: Look in your book or online for the conical pendulum equation.
Step 2: Look at the drawing and see which angle is involved in the equation.
Answer: It's Angle #2 in your drawing.
B. 1/2p
From the relation
P1V1=P2V2
P2=P1V1/V2
If everything equals one
P2=1*1/2(1)
That would equal 1/2
I hope this helps
Please mark as brainliest
Answer:
Temperature affects phase change by slowing down the movement in between the atoms, thus causing a change in kinetic energy, which in turn causes the atoms to undergo forms of combining or a type of disepersion.
Explanation:
Kinetic energy while being the reason phase changes are constant, Kinetic Energy can be caused by other means. Pressure and temperature can affect many other states kinetic energy, which in turn can affect each state of matter. Making a group of atoms or compounds compacts will force the atoms to move closer together thus with a lower net kinetic energy energy. Reducing temperature also works along the same lines. Colder temperatures can slow down atomic movements which in turn will naturally make each atom move close to each other.
With all of the information provided, it is only feasible that pressure and temperature are directly corresponding with the matter and atomic phase change
Answer:
According to Einstein's famous equation, matter can convert into energy (and viceversa) as follows:

where
E is the energy
m is the mass
c is the speed of light (
)
Given the huge value of
, we see that even a tiny amount of matter is able to release a huge amount of energy, when the whole mass is converted into energy. This is precisely what happens in nuclear reactions. For example, in the process of nuclear fusion (that occurs in the core of the stars), two light nuclei fuse together into a heavier nucleus. The mass of the final nucleus is lower than the total mass of the initial nuclei, so part of the mass has been converted into energy according to the equation above: this is why the amount of energy produced by stars is so big.