Answer:

Explanation:
Hello,
In this case, for the given reaction at equilibrium:

We can write the law of mass action as:
![Keq=\frac{[CH_3OH]}{[CO][H_2]^2}](https://tex.z-dn.net/?f=Keq%3D%5Cfrac%7B%5BCH_3OH%5D%7D%7B%5BCO%5D%5BH_2%5D%5E2%7D)
That in terms of the change
due to the reaction extent we can write:
![Keq=\frac{x}{([CO]_0-x)([H_2]_0-2x)^2}](https://tex.z-dn.net/?f=Keq%3D%5Cfrac%7Bx%7D%7B%28%5BCO%5D_0-x%29%28%5BH_2%5D_0-2x%29%5E2%7D)
Nevertheless, for the carbon monoxide, we can directly compute
as shown below:
![[CO]_0=\frac{0.45mol}{1.00L}=0.45M\\](https://tex.z-dn.net/?f=%5BCO%5D_0%3D%5Cfrac%7B0.45mol%7D%7B1.00L%7D%3D0.45M%5C%5C)
![[H_2]_0=\frac{0.57mol}{1.00L}=0.57M\\](https://tex.z-dn.net/?f=%5BH_2%5D_0%3D%5Cfrac%7B0.57mol%7D%7B1.00L%7D%3D0.57M%5C%5C)
![[CO]_{eq}=\frac{0.28mol}{1.00L}=0.28M\\](https://tex.z-dn.net/?f=%5BCO%5D_%7Beq%7D%3D%5Cfrac%7B0.28mol%7D%7B1.00L%7D%3D0.28M%5C%5C)
![x=[CO]_0-[CO]_{eq}=0.45M-0.28M=0.17M](https://tex.z-dn.net/?f=x%3D%5BCO%5D_0-%5BCO%5D_%7Beq%7D%3D0.45M-0.28M%3D0.17M)
Finally, we can compute the equilibrium constant:

Best regards.
Answer:
1. Orbital diagram
2p⁴ ║ ↑↓ ║ "↑" ║ ↑
2s² ║ ↑↓ ║
1s² ║ ↑↓ ║
2. Quantum numbers
- <em>n </em>= 2,
- <em>l</em> = 1,
= 0,
= +1/2
Explanation:
The fill in rule is:
- Follow shell number: from the inner most shell to the outer most shell, our case from shell 1 to 2
- Follow the The Aufbau principle, 1s<2s<2p<3s<3p<4s<3d<4p<5s<4d<5p<6s<4f<5d<6p<7s<5f<6d<7p
- Hunds' rule: Every orbital in a sublevel is singly occupied before any orbital is doubly occupied. All of the electrons in singly occupied orbitals have the same spin (to maximize total spin).
So, the orbital diagram of given element is as below and the sixth electron is marked between " "
2p⁴ ║ ↑↓ ║ "↑" ║ ↑
2s² ║ ↑↓ ║
1s² ║ ↑↓ ║
The quantum number of an electron consists of four number:
- <em>n </em>(shell number, - 1, 2, 3...)
- <em>l</em> (subshell number or orbital number, 0 - orbital <em>s</em>, 1 - orbital <em>p</em>, 2 - orbital <em>d...</em>)
(orbital energy, or "which box the electron is in"). For example, orbital <em>p </em>(<em>l</em> = 1) has 3 "boxes", it was number from -1, 0, 1. Orbital <em>d</em> (<em>l </em>= 2) has 5 "boxes", numbered -2, -1, 0, 1, 2
(spin of electron), either -1/2 or +1/2
In our case, the electron marked with " " has quantum number
- <em>n </em>= 2, shell number 2,
- <em>l</em> = 1, subshell or orbital <em>p,</em>
= 0, 2nd "box" in the range -1, 0, 1
= +1/2, single electron always has +1/2
In order to balance this, you have to count
each element where the elements in the reactants side and the product side
should have equal number of molecules. The balanced reaction is as follows:
KOH + H3PO4 = KH2PO4 +H2O
The change in temperature had the greatest effect at changing the volume of the balloon.
<h3>What are the gas laws?</h3>
The gas laws are used to describe the parameters that has to do with gases.
Given that;
P1 = 98.5 kPa
T1 = 18oC or 291 K
V1 = 74.0 dm3
P2 = 7.0 kPa
V2 = ?
T2 = 18oC or 291 K
P1V1/T1 = P2V2/T2
P1V1T2 =P2V2T1
V2= P1V1T2/P2T1
V2 = 98.5 kPa * 74.0 dm3 * 291 K/ 7.0 kPa * 291 K
V2 = 1041.3 dm3
When;
V1 = 1041.3 dm3
T1 = 291 K
V2 = ?
T2 = 80oC or 353 K
V1/T1 = V2/T2
V1T2 = V2T1
V2 = V1T2/T1
V2 = 1041.3 dm3 * 353 K/291 K
V2 = 1263 dm3
The change in temperature had the greatest effect at changing the volume of the balloon.
Given that
V1 = 100 cm^3
T1 = 273 K
P1 = 1.01 * 10^5 Pa
V2 = ?
P2 = 3.00 x 10^-4 Pa
T2 = -180oC or 255 K
V2= P1V1T2/P2T1
V2 = 1.01 * 10^5 Pa * 100 cm^3 * 255 K / 3.00 x 10^-4 Pa * 273 K
V2 = 3.14 * 10^10 cm^3
Learn more about gas laws:brainly.com/question/12669509
#SPJ1
CO2 is carbon dioxide which is most famous for being in gas form so i would figure if it was exposed to freezing temperatures it would turn into a liquid then maybe a solid<span />