Boy that math stuff will kill a cracker
The reason the "+ C" is not needed in the antiderivative when evaluating a definite integral is; The C's cancel each other out as desired.
<h3>How to represent Integrals?</h3>
Let us say we want to estimate the definite integral;
I = 
Now, for any C, f(x) + C is an antiderivative of f′(x).
From fundamental theorem of Calculus, we can say that;

where Ф(x) is any antiderivative of f'(x). Thus, Ф(x) = f(x) + C would not work because the C's will cancel each other.
Read more about Integrals at; brainly.com/question/22008756
#SPJ1
Answer:
Step-by-step explanation:
A rectangle had a length of 2x-7 and a width of 3x+8y
Perimeter P = 2(l + w)
P = 2(2x - 7 + 3x + 8y)
P = 2(5x + 8y - 7)
P= 10x + 16y - 14
i suppose that t is an exponent. so let: v(t)=final prize of the scooter...t=time in years.....p=initial prize of the scooter . r= rate of depreciation per year so v(t)=p(1-r)^t....
Answer:
Step-by-step explanation:
مرحبًا ، أود أن أحاول مساعدتك في عملك المدرسي. إذا كنت تستطيع أن تشرح أكثر فأنا أقدر ذلك.