Carbon is the element at the heart of all organic compounds, and it is such a versatile element because of its ability to form straight chains, branched chains, and rings. Because these chains and rings can have all sorts of different functional groups in all sorts of different ways (giving the compond all sorts of different physical and chemical properties), carbon's ability to form the backbone of these large structures is critial to the existence of most chemical compounds known to man. Above all, the organic molecules crucial to the biochemical systems that govern living organisms depend on carbon compounds.
The answer is d Thus, the first energy level holds 2 * 1^2 = 2 electrons, while the second holds 2 * 2^2 = 8 electrons. Each orbital. The third energy level can hold up to 18 electrons, meaning that it is not full when it has only electrons.
Answer: 15.3 grams C
Explanation: 1 mole is 6.02x10^23 atoms. We can find the moles of C in 7.675 x 10^23 atoms of C by dividing:
(7.675 x 10^23 atoms C)/(6.02x10^23 atoms C/mole) = 1.275 moles C
The molar mass of carbon is 12g/mole. So the mass of 7.675 x 10^23 atoms is (1.275 moles C)*(12 g/mole C) = 15.3 grams.
Answer:
2.29 moles of Cr₂O₃ are produced
Explanation:
This is the reaction:
4 Cr + 3O₂ → 2Cr₂O₃
Ratio for this equation is 4:2, so 4 moles of chromium can produce the half of moles of chromium(III) oxide
4.58 mol of Cr may produce (4.58 .2)/4 = 2.29 moles of Cr₂O₃