Answer:
158 L.
Explanation:
What is given?
Pressure (P) = 1 atm.
Temperature (T) = 112 °C + 273 = 385 K.
Mass of methane CH4 (g) = 80.0 g.
Molar mass of methane CH4 = 16 g/mol.
R constant = 0.0821 L*atm/mol*K.
What do we need? Volume (V).
Step-by-step solution:
To solve this problem, we have to use ideal gas law: the ideal gas law is a single equation which relates the pressure, volume, temperature, and number of moles of an ideal gas. The formula is:

Where P is pressure, V is volume, n is the number of moles, R is the constant and T is temperature.
So, let's find the number of moles that are in 80.0 g of methane using its molar mass. This conversion is:

So, in this case, n=5.
Now, let's solve for 'V' and replace the given values in the ideal gas law equation:

The volume would be 158 L.
C unbalanced force is occuring
Hello,
I'm not very sure but I think the correct answer is D) Water Wave
I really hope this helps!!!! Happy Holidays!!!! (:
<span>Answer: 17.8 cm
</span>
<span>Explanation:
</span>
<span>1) Since temperature is constant, you use Boyle's law:
</span>
<span>PV = constant => P₁V₁ = P₂V₂
</span><span>=> V₁/V₂ = P₂/P₁</span>
<span>
2) Since the ballon is spherical:
</span><span>V = (4/3)π(r)³</span>
<span>
Therefore, V₁/V₂ = (r₁)³ / (r₂)³
</span>
<span>3) Replacing in the equation V₁/V₂ = P₂/P₁:
</span><span><span>(r₁)³ / (r₂)³ </span>= P₂/P₁</span>
<span>
And you can solve for r₂: (r₂)³ = (P₁/P₂) x (r₁)³
</span>(r₂)³ = (1.0 atm / 0.87 atm) x (17 cm)³ = 5,647.13 cm³
<span>
r₂ = 17.8 cm</span>
it is a molecule* that can be joined with other molecules that are identical to form a polymer*
key words :
a molecule:
a group of atoms bonded together, representing the smallest fundamental unit of a chemical compound that can take part in a chemical reaction.
a polymer:
a substance that has a molecular structure consisting chiefly or entirely of a large number of similar units bonded together
hope this helped, good luck in future studies !
-A