Answer : We can produce 125.7 g of
.
Explanation : The reaction will be

The molecular mass of
is 64.1 g/mol
and molecular mass of
is 34.1 g/mol
For every mole of
we would need twice of
moles, so for every 3 moles of
we need 16 moles of 
Now, we can calculate number of moles
2.61 X (3/16) = 0.49 moles
Here, the molecular mass of
is 256.8 g
multiplying it with the number of 0.49 moles we get, 256.8 X 0.49 = 125.7 g of
.
Hence, 125.7 g of
will be produced.
Explanation:
Conjugated diene is the one that contains alternate double bonds in its structure. That means both the double bonds are separated by a single bond.
Cumulated diene is the one that contains two double bonds on a single atom. This means it has two double bonds continuously.
Isolated double-bonded compound has a single bond isolated by two to three single bonds.
Compound A: Two alkenes are joined by a sigma bond.
For example:
It is a conjugated diene.
Compound B: Two alkenes are joined by a C H 2 group.
It is a cumulative diene.
Compound C: Two alkenes are joined by C H 2 C H 2.
Then it is an isolated alkene.
Compound D: A cyclohexene has a double bond between carbons 1 and 2. Carbon 3 is an sp 2 carbon that is bonded to another s p 2 carbon with an alkyl substituent.
Hence, compound D is a conjugated diene.
Answer:
2100 kPa
Explanation:
The temperature is constant, so the only variables are pressure and volume.
We can use Boyle’s Law.
p₁V₁ = p₂V₂ Divide both sides of the equation by V₂
p₂ = p₁ × V₁/V₂
p₁ = 485 kPa; V₁ = 648 mL
p₂ = ?; V₂ = 0.15 L = 150 mL Calculate p₂
p₂ = 485 × 648/150
p₂ = 2100 kPa
Answer:
Top left square is EE and bottom right square is Ee
Potassium Chloride and sodium chloride is a combination ofmineral supplement that may be helpful in heart prostration