Answer:
una ma parra quen est a qui 23^5(-8)
Explanation:
NO, It Isn't
Ideally a population in Hardy Weinberg equilibrium should hold true to the following equation for genotypic frequencies of an allele;
P² + 2pq + q² = 1
Explanation:
We are provided with allelic frequencies hence we can derive the genotypic frequencies; (CR allele: p = 0.6 Frequency of the CW allele: q = 0.4)
P² = 0.6 ^2 = 0.36
2pq = 2 * 0.6 * 0.4 = 0.48
q² = 0.4 ^ 2 = 0.16
Lets find out if all add up to as supposed to;
0.36 + 0.48 + 0.16 = 1
Converting to percentages is easy – just multiply by 100
- 36 % CRCR
- 48% CRCW
- and 16 % CWCW
The population provided is not in equilibrium because their percentages vary widely to that the expected Hardy Weinberg's equilibrium percentages. This could be attributed to factors like;
- Migration
- Mutations,
- There is natural selection in progress in the population
- There is gene flow
Learn More:
For more on Hardy Weinberg's equilibrium check out;
brainly.com/question/9916141
#LearnWithBrainly
Molarity is moles of solute per liter of solvent, so convert 58 g NaCl to moles, then divide by 1 liter to get your answer
Beta minus decay will be obtain in the radio-active isotope of Fe-26 power 59.
Whenever there are too many protons or even neutrons in a nucleus, one of the protons and neutrons will turn into the other, which is known as beta decay. During beta minus decay, a neutron transforms into a proton, electron, as well as antineutrino.
→ 
It can be seen that after the beta minus decay Fe changes into Co.
In beta decay , decrease in atomic number by one unit Fe atom get converted into Co atom.
Neutron-rich nuclei often decay by producing both an electron and an antineutrino.
Therefore, Beta minus decay will be obtain in the radio-active isotope of Fe-26 power 59.
To know more about radio-active isotope
brainly.com/question/4421649
#SPJ4
Answer:
Neutral
Explanation:
They have the same # of protons and electrons