Explanation:
Ohm's law is used here. V = IR, and variations. The voltage across all elements is the same in this parallel circuit. (V1 =V2 =V3)
The total supply current is the sum of the currents in each of the branches. (It = I1 +I2 +I3)
Rt = (8 V)/(8 A) = 1 Ω . . . . supply voltage divided by supply current
I3 = 8A -3A -4A = 1 A . . . . supply current not flowing through other branches
R1 = (8 V)/(3 A) = 8/3 Ω
R2 = (8 V)/(4 A) = 2 Ω
R3 = (8 V)/(I3) = (8 V)/(1 A) = 8 Ω
V1 = V2 = V3 = 8 V
Answer:
critical stress = 595 MPa
Explanation:
given data
fracture toughness = 74.6 MPa-![\sqrt{m}](https://tex.z-dn.net/?f=%5Csqrt%7Bm%7D)
crack length = 10 mm
f = 1
solution
we know crack length = 10 mm
and crack length = 2a as given in figure attach
so 2a = 10
a = 5 mm
and now we get here with the help of plane strain condition , critical stress is express as
critical stress =
......................1
put here value and we get
critical stress =
critical stress = 595 MPa
so here stress is change by plane strain condition because when plate become thinner than condition change by plane strain to plain stress.
plain stress condition occur in thin body where stress through thickness not vary by the thinner section.