1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
maxonik [38]
4 years ago
11

Compressed Air In a piston-cylinder device, 10 gr of air is compressed isentropically. The air is initially at 27 °C and 110 kPa

. After being compressed, the air is at 450 °C. Determine
(a) the final pressure in [MPa],
(b) the increase in total internal energy in [kJ], and
(c) the total work required in [kJ].
Note that for air R-287 J/kg.K and c.-716.5 J/kg.K, and ?-
Engineering
1 answer:
Helen [10]4 years ago
4 0

Answer:

(a) 2.39 MPa (b) 3.03 kJ (c) 3.035 kJ

Explanation:

Solution

Recall that:

A 10 gr of air is compressed isentropically

The initial air is at = 27 °C, 110 kPa

After compression air is at = a450 °C

For air,  R=287 J/kg.K

cv = 716.5 J/kg.K

y = 1.4

Now,

(a) W efind the pressure on [MPa]

Thus,

T₂/T₁ = (p₂/p₁)^r-1/r

=(450 + 273)/27 + 273) =

=(p₂/110) ^0.4/1.4

p₂ becomes  2390.3 kPa

So, p₂ = 2.39 MPa

(b) For the increase in total internal energy, is given below:

ΔU = mCv (T₂ - T₁)

=(10/100) (716.5) (450 -27)

ΔU =3030 J

ΔU =3.03 kJ

(c) The next step is to find the total work needed in kJ

ΔW = mR ( (T₂ - T₁) / k- 1

(10/100) (287) (450 -27)/1.4 -1

ΔW = 3035 J

Hence, the total work required is = 3.035 kJ

You might be interested in
The yield strength of mild steel is 150 MPa for an average grain diameter of 0.038 mm ; yield strength is 250 MPa for average gr
djyliett [7]

Answer:

Explanation:

Hall-Petch equation provides direct relations between the strength of the material and the grain size:

σ=σ0+k/√d , where d- grain size, σ- strength for the given gran size, σ0 and k are the equation constants.

As in this problem, we don't know the constants of the equation, but we know two properties of the material, we are able to find them from the system of equations:

σ1=σ0+k/√d1

σ2=σ0+k/√d2 , where 1 and 2 represent 150MPa and 250MPa strength of the steel.

Note, that for the given problem, there is no need to convert units to SI, as constants can have any units, which are convenient for us.

From the system of equations calculations, we can find constant: σ0=55.196 MPa, k=18.48 MPa*mm^(0.5)

Now we are able to calculate strength for the grain diameter of 0.004 mm:

σ=55.196+18.48/(√0.004)=347.39 MPa

The strength of the steel with the grais size of 0.004 mm is 347.39 MPa.

6 0
4 years ago
(Signal Property) Under what condition is a discrete-time signal x[????] or a continuous-time signal x(????) periodic? Determine
Cloud [144]

Answer:

a. 2x/3

b. 8

Explanation:

fundamental period can be defined to mean that at after every period of 2π radians or 360° the value of graph is repeated. For such functions the fundamental period is the period after which they repeat themselves.

It van also be looked as The fundamental period of cos(θ) is 2π. That is (for example) cos(0) to cos(2π) represents one full period.

Please see attachment for the step by step solution.

7 0
3 years ago
Wave flow of an incompressible fluid into a solid surface follows a sinusoidal pattern. Flow is two-dimensional with the x-axis
Artyom0805 [142]

Answer:

sorry , for my point

Explanation:

4 0
3 years ago
A steel plate has a hole drilled through it. The plate is put into a furnace and heated. What happens to the size of the inside
djverab [1.8K]

Answer:

The diameter increases

Explanation:

The expansion in the metal is uniform in every dimension

4 0
3 years ago
A standard penetration test has been conducted on a coarse sand at a depth of 16 ft below the ground surface. The blow counts ob
scoray [572]

Solution :

Given :

The number of blows is given as :

0 - 6 inch = 4 blows

6 - 12 inch = 6 blows

12 - 18 inch = 6 blows

The vertical effective stress $=1500 \ lb/ft^2$

                                              $= 71.82 \ kN/m^2$

                                             $ \sim 72 \ kN/m^2 $

Now,

$N_1=N_0 \left(\frac{350}{\bar{\sigma}+70} \right)$

$N_1 = $ corrected N - value of overburden

$\bar{\sigma}=$ effective stress at level of test

0 - 6 inch, $N_1=4 \left(\frac{350}{72+70} \right)$

                      = 9.86

6 - 12 inch, $N_1=6 \left(\frac{350}{72+70} \right) $

                        = 14.8

12 - 18 inch, $N_1=6 \left(\frac{350}{72+70} \right) $

                         = 14.8

$N_{avg}=\frac{9.86+14.8+14.8}{3}$

       = 13.14

       = 13

8 0
3 years ago
Other questions:
  • An equal-tangent sag vertical curve connects a 1% and 3% initial and final grades, respectively, and is designed for 70 mph. The
    12·1 answer
  • ... is an actual sequence of interactions (i.e., an instance) describing one specific situation; a ... is a general sequence of
    9·1 answer
  • Heyyyyyyyyy people wrud
    7·1 answer
  • What would happen if the brake pedal was released while the bleed screw was open during brake bleeding?
    7·1 answer
  • Describe how to use cleaning tools and equipment safely and properly
    6·1 answer
  • How do you build a house.
    15·1 answer
  • Which work practice should be followed to best prevent the ingestion of chemicals?
    7·1 answer
  • True or false for the 4 questions?
    8·1 answer
  • How do you get your drivers lisnes when your 15
    8·1 answer
  • Technician A says the compressor is the dividing line of the refrigeration system, low- to high-side. Technician B says the expa
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!