The by-product of the chlorination of an alkane is <u>HCl</u>
Explanation:
- Chlorination is the process of adding chlorine to drinking water to disinfect it and kill germs. Different processes can be used to achieve safe levels of chlorine in drinking water.
- Chlorination of alkane gives a mixture of different products.
- When consider mechanism of alkanes chlorination, free radicals are formed during the reaction to keep the continuous reaction.
- Different alkyl chloride compounds, extended carbon chains compounds and HCl are formed as products in product mixture.
- Chlorination byproducts, their toxicodynamics and removal from drinking water.
- Halogenated trihalomethanes (THMs) and haloacetic acids (HAAs) are two major classes of disinfection byproducts (DBPs) commonly found in waters disinfected with chlorine
- Chlorine is available as compressed elemental gas, sodium hypochlorite solution (NaOCl) or solid calcium hypochlorite (Ca(OCl)2
Change the places of 'acts against the motion of an object' and 'causes an object to change speed or direction'
Answer:
B
Explanation:
B It’s a physical change because the water and the salt kept their original properties.
<span>You can answer this question by getting the atomic number and atomic mass of Oxygen from a periodic table. There you will find that the atomic number is 8, that means, by definition, that it has 8 protons. This is, because atomic number is defined as the number of protons of an element. Given that the atom is neutral, that implies that the atoms have the same number of electrons than protons. So you already know that the oxygen atoms has 8 protons and 8 electrons. The number of neutrons can vary, which is what defines the isotopes. Given that the atomic mass of oxygen is 15.999, that means that most atoms of oxygen has 8 neutrons (8 protons +8 neutrons = 16 atomic mass). But you can not be sure that a specific atom of oxygen has 8 neutrons, nevertheless, given that the other options are discarded (because they do not have 8 protons and 8 electrons), the only correct answer is the option A. 8 protons, 8 electrons, and 8 neutrons.</span>
Answer:
The answer to your question is: ΔHrxm = -23.9 kJ
Explanation:
Data:
2Fe(s)+3/2O2(g)→Fe2O3(s), ΔH = -824.2 kJ (1)
CO(g)+1/2O2(g)→CO2(g) ΔH = -282.7 kJ (2)
Reaction:
Fe2O3(s)+3CO(g)→2Fe(s)+3CO2(g)
We invert (1) and change the sign of ΔH
Fe2O3(s) → 2Fe(s)+3/2O2(g) ΔH = 824.2 kJ
We multiply (2) by 3
3( CO(g)+1/2O2(g)→CO2(g) ΔH = -282.7 kJ) (2)
3CO(g)+3/2O2(g)→3CO2(g) ΔH = -848.1 kJ
We add (1) and (2)
Fe2O3(s) → 2Fe(s)+3/2O2(g) ΔH = 824.2 kJ
3CO(g)+3/2O2(g)→3CO2(g) ΔH = -848.1 kJ
Fe2O3(s) + 3CO(g)+3/2O2(g) → 2Fe(s)+3/2O2 + 3CO2(g)
Simplify
Fe2O3(s)+3CO(g)→2Fe(s)+3CO2(g) and ΔHrxm = -23.9 kJ