Answer:
Ag⁺(aq) + I⁻(aq) → AgI(s)
Explanation:
Net ionic equation is a way to write a chemical equation in which you are listing only the species that are participating in the reaction.
In the reaction:
AgNO₃(aq) + NaI(aq) → AgI(s) + NaNO₃(aq).
The ionic equation is:
Ag⁺(aq) + NO₃⁻(aq) + Na⁺(aq) + I⁻(aq) → AgI(s) + Na⁺(aq) + NO₃⁻(aq).
Now, listing only the species that are participating in the reaction:
<h3>Ag⁺(aq) + I⁻(aq) → AgI(s)</h3>
What we want to measure is the taste of coffee.
The following were kept constant during the experimental investigation:
The type of coffee,
The type of percolator,
The same amount and type of water,
The same perking time,
The same electrical sources.
Because these items were kept constant, they are not expected to influence the outcome of the experimental investigation.
Define:
y = the metric used to measure the taste of coffee
x = amount of coffee grounds used for the taste experiment.
Therefore the relationship that arises from the experiment is
y = y(x).
Because x is controllable and is varied during the experiment, it is the independent variable.
Because the measured value of y depends on x, therefore y is the dependent variable.
Answer:
The taste of coffee is the dependent variable.
The amount of coffee grounds used is the independent variable.
Answer: stay the same because it's a solid.
Explanation:
B 1.2g/mL just look at a graph and pin point those answers
Answer:
Valence electrons are involved in Reaction B but not in Reaction A.
Explanation:
The description of reaction A in which protons are lost or gained by the atom of the element is a nuclear reaction. In nuclear reactions, the nucleons which are the protons and neutrons drives the reaction. No valence electrons in the orbiting shells are involved in this kind of reaction. During this type of reaction, an atom changes it identity to that of another.
Reaction B in which no identity change occurs is a chemical reaction. In chemical reactions bonds are formed by the atoms using the valence electrons that orbits round the central nucleus. The atoms remain the same but it chose to attain stability and an inert configuration by losing or gaining electrons.