Answer:The answer to this question comes from experiments done by the scientist Robert Boyle in an effort to improve air pumps. In the 1600's, Boyle measured the volumes of gases at different pressures. Boyle found that when the pressure of gas at a constant temperature is increased, the volume of the gas decreases. when the pressure of gas is decreased, the volume increases. this relationship between pressure and volume is called Boyle's law.
Explanation: So, at constant temperature, the answer to your answer is: the volume decreases in the same ratio as the ratio of pressure increases.
BUT, in general, there is not a single answer to your question. It depend by the context.
For example, if you put the gas in a rigid steel tank (volume is constant), you can heat the gas, so provoking a pressure increase. But you won't get any change in volume.
Or, if you heat the gas in a partially elastic vessel (as a tire or a soccer ball) you will get both an increase of volume AND an increase of pressure.
FINALLY if you inflate a bubblegum ball, the volume will be increased without any change in pressure and temperature, because you have increased the NUMBER of molecules in the balloon.
There are many other ways to change volume and pressure of a gas that are different from the Boyle experiment.
The mass of pentane the student should weigh out is
The density of pentane is 0.626 gcm-3
To calculate the mass of pentane following expression is used,
(Density is defined as the mass divide by volume)
Density = mass / volume
mass of pentane = Density of pentane * Volume of pentane
mass of pentane = 0.626 gcm-3 * 45.0 mL
= 28.17 g
Here the unit of mass of pentane is g,
However the unit of density is gcm-3 and unit of volume is mL i.e. cm3
Hence, Mass = gcm-3 * cm3
Mass = g
The mass of pentane the student should weigh out is 28.17g
Learn more about Density on
brainly.com/question/1354972
#SPJ1
Answer:
please explain further and i maybe can help you
Explanation:
Answer:materials that impede the free flow of electrons from atom to atom and molecule to molecule.