<u>Answer:</u> The equilibrium constant for the given reaction is 0.8
<u>Explanation:</u>
Equilibrium constant is defined as the ratio of concentration of the products raised to the power its stoichiometric coefficients to the concentration of reactants raised to power its stoichiometric coefficient. It is represented as 
For the general equation:

The equilibrium constant is represented as:
![K_c=\frac{[C]^c[D]^d}{[A]^a[B]^b}](https://tex.z-dn.net/?f=K_c%3D%5Cfrac%7B%5BC%5D%5Ec%5BD%5D%5Ed%7D%7B%5BA%5D%5Ea%5BB%5D%5Eb%7D)
For the given chemical equation:

for this equation is given by:
![K_c=\frac{[H_2O][CO]}{[H_2][CO_2]}](https://tex.z-dn.net/?f=K_c%3D%5Cfrac%7B%5BH_2O%5D%5BCO%5D%7D%7B%5BH_2%5D%5BCO_2%5D%7D)
Concentration at equilibrium of

Putting values in above equation, we get:

Hence, the equilibrium constant for the given chemical reaction is 0.8
<span>If 1 kj/mol is 0.239 kilocalories/ mol, then 941 kj/mol is 224.904 kcal/mol or 224904 cal/mol. They both are energy units. The joule is the International System unit. It is ultimately defined in terms of the meter, kilogram, and second. One calorie is the amount of heat required to raise the temperature of 1 gram of water by 1°C</span>
Answer:
Neutron
Explanation:
Neutron, neutral subatomic particle that is a constituent of every atomic nucleus except ordinary hydrogen. It has no electric charge and a rest mass equal to 1.67493 × 10−27 kg—marginally greater than that of the proton but nearly 1,839 times greater than that of the electron.