Answer:
58mL
Explanation:
Given parameters:
Density of water = 1g/mL
Mass of object = 58g
Unknown:
The volume the object must have to be able to float in water = ?
Solution:
To solve this problem, we know that the object must have density value equal to that of water or less than that of water to be able to float.
We then set its density to that of water;
Density =
Volume =
So;
Volume =
= 58mL
I am not all understood but for the school to earn money you can:
make
--a raffle
--lotto
-- yard sale
-- class photo
-- origami for sale or something
-- buffet or food sale (example all Friday ice cream sale, 2 livre ice cream)
Answer:
1. 4FeCl3 + 3O2 → 2Fe2O3 + 6Cl2
2. 6 moles of Cl2
Explanation:
1. The balanced equation for the reaction. This is illustrated below:
4FeCl3 + 3O2 → 2Fe2O3 + 6Cl2
2. Determination of the number of mole of Cl2 produce when 4 moles of FeCl3 react with 4 moles. To obtain the number of mole of Cl2 produced, we must determine which reactant is the limiting reactant.
This is illustrated below:
From the balanced equation above,
4 moles of FeCl3 reacted with 3 moles of O2.
Since lesser amount of O2 (i.e 3 moles) than what was given (i.e 4 moles) is needed to react completely with 4 moles of FeCl3, therefore FeCl3 is the limiting reactant and O2 is the excess reactant.
Finally, we can obtain the number of mole Cl2 produced from the reaction as follow:
Note: the limiting reactant is used as it will produce the maximum yield of the reaction since all of it is used up in the reaction.
From the balanced equation above,
4 moles of FeCl3 will react to produced 6 moles of Cl2.
Answer:
The answer to your question is 32.44 moles
Explanation:
Data
moles of Na₂CO₃ = ?
volume = 9.54 l
concentration = 3.4 M
Formula
Molarity = 
Solve for number of moles
number of moles = Molarity x volume
Substitution
Number of moles = (3.4)( 9.54)
Simplification
Number of moles = 32.44
Answer:
0.08 g
Explanation:
100.0 mL = 0.10 L
Multiply the volume by the molarity to find moles.
0.10 L × 0.20 M = 0.002 mol
Convert moles to grams.
0.002 mol × 40 g/mol = 0.08 g